cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A059822 Expansion of series related to Liouville's Last Theorem: g.f. sum_{t>0} (-1)^(t+1) *x^(t*(t+1)/2) / ( (1-x^t)^5 *product_{i=1..t} (1-x^i) ).

This page as a plain text file.
%I A059822 #12 Jun 29 2020 09:51:36
%S A059822 0,1,6,20,55,119,246,435,766,1211,1926,2807,4193,5766,8161,10821,
%T A059822 14711,18820,24925,31009,39984,48895,61609,73844,91905,108264,132400,
%U A059822 154641,186462,214772,257118,292749,346430,392499,459424,515579
%N A059822 Expansion of series related to Liouville's Last Theorem: g.f. sum_{t>0} (-1)^(t+1) *x^(t*(t+1)/2) / ( (1-x^t)^5 *product_{i=1..t} (1-x^i) ).
%H A059822 G. E. Andrews, <a href="http://www.mat.univie.ac.at/~slc/s/s42andrews.html">Some debts I owe</a>, Séminaire Lotharingien de Combinatoire, Paper B42a, Issue 42, 2000; see (7.4).
%p A059822 Mk := proc(k) -1*add( (-1)^n*q^(n*(n+1)/2)/(1-q^n)^k/mul(1-q^i,i=1..n), n=1..101): end; # with k=5
%Y A059822 Cf. A000005 (k=1), A059819 (k=2), A059820 (k=3), ..., A059825 (k=8).
%K A059822 nonn
%O A059822 0,3
%A A059822 _N. J. A. Sloane_, Feb 24 2001