cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A059823 Expansion of series related to Liouville's Last Theorem: g.f. sum_{t>0} (-1)^(t+1) *x^(t*(t+1)/2) / ( (1-x^t)^6 *product_{i=1..t} (1-x^i) ).

This page as a plain text file.
%I A059823 #12 Jun 29 2020 09:49:48
%S A059823 0,1,7,27,83,202,455,889,1682,2892,4894,7694,12090,17822,26411,37206,
%T A059823 52730,71447,97984,128714,171421,220064,285963,359204,458506,565347,
%U A059823 708665,862163,1064302,1276474,1558090,1845874,2226044,2614188
%N A059823 Expansion of series related to Liouville's Last Theorem: g.f. sum_{t>0} (-1)^(t+1) *x^(t*(t+1)/2) / ( (1-x^t)^6 *product_{i=1..t} (1-x^i) ).
%H A059823 G. E. Andrews, <a href="http://www.mat.univie.ac.at/~slc/s/s42andrews.html">Some debts I owe</a>, Séminaire Lotharingien de Combinatoire, Paper B42a, Issue 42, 2000; see (7.4).
%p A059823 Mk := proc(k) -1*add( (-1)^n*q^(n*(n+1)/2)/(1-q^n)^k/mul(1-q^i,i=1..n), n=1..101): end; # with k=6
%Y A059823 Cf. A000005 (k=1), A059819 (k=2), A059820 (k=3), ..., A059825 (k=8).
%K A059823 nonn
%O A059823 0,3
%A A059823 _N. J. A. Sloane_, Feb 24 2001