This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A059835 #31 Oct 11 2022 19:35:45 %S A059835 0,1,2,0,1,2,1,2,0,1,2,2,0,1,2,1,2,0,1,2,0,1,2,1,2,0,1,2,2,0,1,2,1,2, %T A059835 0,1,2,1,2,0,1,2,2,0,1,2,1,2,0,1,2,0,1,2,1,2,0,1,2,2,0,1,2,1,2,0,1,2, %U A059835 2,0,1,2,1,2,0,1,2,0,1,2,1,2,0,1,2,2,0,1,2,1,2,0,1,2,1,2,0,1,2,2,0,1,2,1,2 %N A059835 Form triangle as follows: start with three single digits: 0, 1, 2. Each succeeding row is a concatenation of the previous three rows. %C A059835 Trajectory of 0 under the morphism 0 -> 1, 1-> 2, 2 -> 012. - _Robert G. Wilson v_, May 20 2014 %C A059835 The sequence of row lengths is A000213. - _Michael Somos_, May 22 2014 %D A059835 C. Pickover, Wonders of Numbers, Oxford University Press, NY, 2001, p. 273. %H A059835 C. A. Pickover, "Wonders of Numbers, Adventures in Mathematics, Mind and Meaning," <a href="http://www.zentralblatt-math.org/zmath/en/search/?q=an:0983.00008&format=complete">Zentralblatt review</a> %H A059835 <a href="/index/Fi#FIXEDPOINTS">Index entries for sequences that are fixed points of mappings</a> %F A059835 a(n) = A059832(n) - 1. - _Sean A. Irvine_, Oct 11 2022 %e A059835 Triangle begins: %e A059835 0 %e A059835 1 %e A059835 2 %e A059835 0 1 2 %e A059835 1 2 0 1 2 %e A059835 2 0 1 2 1 2 0 1 2 %e A059835 ... %p A059835 T:= proc(n) option remember; %p A059835 `if`(n<3, n, seq(T(i), i=n-3..n-1)) %p A059835 end: %p A059835 seq(T(n), n=0..10); # _Alois P. Heinz_, May 22 2014 %t A059835 NestList[ Flatten[# /. {0 -> {1}, 1 -> {2}, 2 -> {0, 1, 2}}] &, {0}, 8] // Flatten (* _Robert G. Wilson v_, May 20 2014 *) %Y A059835 Cf. A059832. %K A059835 easy,nonn,tabf,base %O A059835 0,3 %A A059835 _Jason Earls_, Feb 25 2001 %E A059835 More terms from Larry Reeves (larryr(AT)acm.org), Feb 26 2001