This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A059868 #28 Apr 15 2025 13:04:46 %S A059868 3,9,11,12,24,30,32,33 %N A059868 There exist no palindromic pentagonal numbers of length a(n). %H A059868 Patrick De Geest, <a href="http://www.worldofnumbers.com/penta.htm">Palindromic pentagonals</a> %t A059868 A002069 = {0, 1, 5, 22, 1001, 2882, 15251, 720027, 7081807, 7451547, 26811862, 54177145, 1050660501, 1085885801, 1528888251, 2911771192, 2376574756732, 5792526252975, 5875432345785, 10810300301801, 264571020175462, 5292834004382925, 10808388588380801, 15017579397571051, 76318361016381367, 150621384483126051, 735960334433069537, 1003806742476083001, 1087959810189597801, 2716280733370826172}; %t A059868 A059868[n_] := Length[Select[A002069, IntegerLength[#] == n || (n == 1 && # == 0) &]]; %t A059868 Select[Range[18], A059868[#] == 0 &] (* _Robert Price_, Apr 26 2019 *) %o A059868 (Python) %o A059868 def ispal(n): s = str(n); return s == s[::-1] %o A059868 def penpals(limit): %o A059868 for k in range(limit+1): %o A059868 if ispal(k*(3*k-1)//2): yield k*(3*k-1)//2 %o A059868 def aupto(limit): %o A059868 lengths = set(range(1, limit+1)) %o A059868 for p in penpals(10**limit): %o A059868 lp, minlen = len(str(p)), min(lengths) %o A059868 for li in list(lengths): %o A059868 if li < lp: print(li, "in A059868"); lengths.discard(li) %o A059868 if lp in lengths: lengths.discard(lp); print("... discarding", lp) %o A059868 if len(lengths) == 0: return %o A059868 aupto(15) # _Michael S. Branicky_, Mar 09 2021 %Y A059868 Cf. A034822, A059869, A059870, A034307, A000326, A028386, A002069. %K A059868 nonn,base,hard %O A059868 1,1 %A A059868 _Patrick De Geest_, Feb 15 2000 %E A059868 Name clarified by _David A. Corneth_, Apr 26 2019 %E A059868 a(6)-a(8) from _Bert Dobbelaere_, Apr 15 2025