This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A059873 #9 Oct 13 2022 18:26:11 %S A059873 1,3,5,13,21,46,78,175,303,639,1143,2539,4542,9214,17406,36735,69374, %T A059873 139254,270327,556031,1079294,2162678,4259819,8642558,17022974, %U A059873 34078590,67632893,136249338,270401534,541064701,1077935867,2162163707 %N A059873 The lexicographically earliest sequence of binary encodings of solutions satisfying the equation given in A059871. %C A059873 The encoding is explained in A059872. Apply bin_prime_sum (see A059876) to this sequence and you get A000040, the prime numbers. %H A059873 Sean A. Irvine, <a href="/A059873/b059873.txt">Table of n, a(n) for n = 1..50</a> %p A059873 primesums_primes_search(16); primesums_primes_search := (upto_n) -> primesums_primes_search_aux([],1,upto_n); primesums_primes_search_aux := proc(a,n,upto_n) local i,p,t; if(n > upto_n) then RETURN(a); fi; p := ithprime(n); for i from (2^(n-1)) to ((2^n)-1) do t := bin_prime_sum(i); if(t = p) then print([op(a),i]); RETURN(primesums_primes_search_aux([op(a),i],n+1,upto_n)); fi; od; RETURN([op(a),`and no more found`]); end; %Y A059873 Cf. A059459, A059874, A059875. %K A059873 nonn %O A059873 1,2 %A A059873 _Antti Karttunen_, Feb 05 2001 %E A059873 More terms from _Naohiro Nomoto_, Sep 12 2001 %E A059873 More terms from Larry Reeves (larryr(AT)acm.org), Nov 20 2003