cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A059873 The lexicographically earliest sequence of binary encodings of solutions satisfying the equation given in A059871.

This page as a plain text file.
%I A059873 #9 Oct 13 2022 18:26:11
%S A059873 1,3,5,13,21,46,78,175,303,639,1143,2539,4542,9214,17406,36735,69374,
%T A059873 139254,270327,556031,1079294,2162678,4259819,8642558,17022974,
%U A059873 34078590,67632893,136249338,270401534,541064701,1077935867,2162163707
%N A059873 The lexicographically earliest sequence of binary encodings of solutions satisfying the equation given in A059871.
%C A059873 The encoding is explained in A059872. Apply bin_prime_sum (see A059876) to this sequence and you get A000040, the prime numbers.
%H A059873 Sean A. Irvine, <a href="/A059873/b059873.txt">Table of n, a(n) for n = 1..50</a>
%p A059873 primesums_primes_search(16); primesums_primes_search := (upto_n) -> primesums_primes_search_aux([],1,upto_n); primesums_primes_search_aux := proc(a,n,upto_n) local i,p,t; if(n > upto_n) then RETURN(a); fi; p := ithprime(n); for i from (2^(n-1)) to ((2^n)-1) do t := bin_prime_sum(i); if(t = p) then print([op(a),i]); RETURN(primesums_primes_search_aux([op(a),i],n+1,upto_n)); fi; od; RETURN([op(a),`and no more found`]); end;
%Y A059873 Cf. A059459, A059874, A059875.
%K A059873 nonn
%O A059873 1,2
%A A059873 _Antti Karttunen_, Feb 05 2001
%E A059873 More terms from _Naohiro Nomoto_, Sep 12 2001
%E A059873 More terms from Larry Reeves (larryr(AT)acm.org), Nov 20 2003