A059883 As upper right triangle: descending wiggly sums to n where first term is k (sums in which terms alternately decrease and increase; zagzig partitions).
1, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 1, 1, 1, 0, 2, 1, 1, 1, 1, 0, 2, 2, 2, 1, 1, 1, 0, 4, 3, 2, 2, 1, 1, 1, 0, 6, 6, 3, 3, 2, 1, 1, 1, 0, 9, 9, 6, 3, 3, 2, 1, 1, 1, 0, 14, 13, 10, 6, 4, 3, 2, 1, 1, 1, 0, 23, 21, 15, 10, 6, 4, 3, 2, 1, 1, 1, 0, 35, 33, 24, 15, 10, 7, 4, 3, 2, 1, 1, 1, 0, 55, 52, 38, 25, 15, 10, 7, 4, 3, 2, 1, 1, 1
Offset: 1
Examples
Rows start (1,0,0,0,0,...), (1,1,0,1,...), (1,1,1,...) etc. T(10,4)=6 since 10 can be written as 4+2+4, 4+2+3+1, 4+1+5, 4+1+4+1, 4+1+3+2, or 4+1+2+1+2.
Links
- Alois P. Heinz, Rows n = 1..200, flattened
Formula
If n>k>0 T(n, k)=sum_j[S(n-k, j)] over k>j and if n>0 T(n, n)=1; where S(n, k)=A059882(n, k) and if n>k>0, S(n, k)=sum_j[T(n-k, j)] over j>k (note reversal) and if n>0 S(n, n)=1.