cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A059893 Reverse the order of all but the most significant bit in binary expansion of n: if n = 1ab..yz then a(n) = 1zy..ba.

This page as a plain text file.
%I A059893 #111 Dec 08 2024 12:26:05
%S A059893 1,2,3,4,6,5,7,8,12,10,14,9,13,11,15,16,24,20,28,18,26,22,30,17,25,21,
%T A059893 29,19,27,23,31,32,48,40,56,36,52,44,60,34,50,42,58,38,54,46,62,33,49,
%U A059893 41,57,37,53,45,61,35,51,43,59,39,55,47,63,64,96,80,112,72,104,88,120
%N A059893 Reverse the order of all but the most significant bit in binary expansion of n: if n = 1ab..yz then a(n) = 1zy..ba.
%C A059893 A self-inverse permutation of the natural numbers.
%C A059893 a(n)=n if and only if A081242(n) is a palindrome. - _Clark Kimberling_, Mar 12 2003
%C A059893 a(n) is the position in B of the reversal of the n-th term of B, where B is the left-to-right binary enumeration sequence (A081242 with the empty word attached as first term). - _Clark Kimberling_, Mar 12 2003
%C A059893 From _Antti Karttunen_, Oct 28 2001: (Start)
%C A059893 When certain Stern-Brocot tree-related permutations are conjugated with this permutation, they induce a permutation on Z (folded to N), which is an infinite siteswap permutation (see, e.g., figure 7 in the Buhler and Graham paper, which is permutation A065174). We get:
%C A059893    A065260(n) = a(A057115(a(n))),
%C A059893    A065266(n) = a(A065264(a(n))),
%C A059893    A065272(n) = a(A065270(a(n))),
%C A059893    A065278(n) = a(A065276(a(n))),
%C A059893    A065284(n) = a(A065282(a(n))),
%C A059893    A065290(n) = a(A065288(a(n))). (End)
%C A059893 Every nonnegative integer has a unique representation c(1) + c(2)*2 + c(3)*2^2 + c(4)*2^3 + ..., where every c(i) is 0 or 1. Taking tuples of coefficients in lexical order (i.e., 0, 1; 01,11; 001,011,101,111; ...) yields A059893. - _Clark Kimberling_, Mar 15 2015
%C A059893 From _Ed Pegg Jr_, Sep 09 2015: (Start)
%C A059893 The reduced rationals can be ordered either as the Calkin-Wilf tree A002487(n)/A002487(n+1) or the Stern-Brocot tree A007305(n+2)/A047679(n). The present sequence gives the order of matching rationals in the other sequence.
%C A059893 For reference, the Calkin-Wilf tree is 1, 1/2, 2, 1/3, 3/2, 2/3, 3, 1/4, 4/3, 3/5, 5/2, 2/5, 5/3, 3/4, 4, 1/5, 5/4, 4/7, 7/3, 3/8, 8/5, 5/7, 7/2, 2/7, 7/5, 5/8, 8/3, 3/7, 7/4, 4/5, ..., which is A002487(n)/A002487(n+1).
%C A059893 The Stern-Brocot tree is 1, 1/2, 2, 1/3, 2/3, 3/2, 3, 1/4, 2/5, 3/5, 3/4, 4/3, 5/3, 5/2, 4, 1/5, 2/7, 3/8, 3/7, 4/7, 5/8, 5/7, 4/5, 5/4, 7/5, 8/5, 7/4, 7/3, 8/3, 7/2, ..., which is A007305(n+2)/A047679(n).
%C A059893 There is a great little OEIS-is-useful story here. I had code for the position of fractions in the Calkin-Wilf tree. The best I had for positions of fractions in the Stern-Brocot tree was the paper "Locating terms in the Stern-Brocot tree" by Bruce Bates, Martin Bunder, Keith Tognetti. The method was opaque to me, so I used my Calkin-Wilf code on the Stern-Brocot fractions, and got A059893. And thus the problem was solved. (End)
%H A059893 Alois P. Heinz, <a href="/A059893/b059893.txt">Table of n, a(n) for n = 1..8191</a> (first 1023 terms from T. D. Noe)
%H A059893 Bruce Bates, Martin Bunder, and Keith Tognetti, <a href="http://dx.doi.org/10.1016/j.ejc.2007.10.005">Locating terms in the Stern-Brocot tree</a>, European Journal of Combinatorics 31.3 (2010): 1020-1033.
%H A059893 Joe Buhler and R. L. Graham, <a href="http://www.cecm.sfu.ca/organics/papers/buhler/index.html">Juggling Drops and Descents</a>, Amer. Math. Monthly, 101, (no. 6) 1994, 507-519.
%H A059893 Dana G. Korssjoen, Biyao Li, Stefan Steinerberger, Raghavendra Tripathi, and Ruimin Zhang, <a href="https://arxiv.org/abs/2012.04625">Finding structure in sequences of real numbers via graph theory: a problem list</a>, arXiv:2012.04625, 2020-2021.
%H A059893 Wikipedia, <a href="https://en.wikipedia.org/wiki/Calkin%E2%80%93Wilf_tree">Calkin-Wilf Tree</a>.
%H A059893 Wikipedia, <a href="https://en.wikipedia.org/wiki/Stern%E2%80%93Brocot_tree">Stern-Brocot tree</a>.
%H A059893 <a href="/index/St#Stern">Index entries for sequences related to Stern's sequences</a>
%H A059893 <a href="/index/Per#IntegerPermutation">Index entries for sequences that are permutations of the natural numbers</a>
%F A059893 a(n) = A030109(n) + A053644(n). If 2*2^k <= n < 3*2^k then a(n) = 2*a(n-2^k); if 3*2^k <= n < 4*2^k then a(n) = 1 + a(n-2^k) starting with a(1)=1. - _Henry Bottomley_, Sep 13 2001
%e A059893 a(11) = a(1011) = 1110 = 14.
%e A059893 With empty word e prefixed, A081242 becomes (e,1,2,11,21,12,22,111,211,121,221,112,...); (reversal of term #9) = (term #12); i.e., a(9)=12 and a(12)=9. - _Clark Kimberling_, Mar 12 2003
%e A059893 From _Philippe Deléham_, Jun 02 2015: (Start)
%e A059893 This sequence regarded as a triangle with rows of lengths 1, 2, 4, 8, 16, ...:
%e A059893    1;
%e A059893    2,  3;
%e A059893    4,  6,  5,  7;
%e A059893    8, 12, 10, 14,  9,  13,  11,  15;
%e A059893   16, 24, 20, 28, 18,  26,  22,  30,  17,  25,  21,  29,  19,  27,  23,  31;
%e A059893   32, 48, 40, 56, 36,  52,  44, ...
%e A059893 Row sums = A010036. (End)
%p A059893 # Implements Bottomley's formula
%p A059893 A059893 := proc(n) option remember; local k; if(1 = n) then RETURN(1); fi; k := floor_log_2(n)-1; if(2 = floor(n/(2^k))) then RETURN(2*A059893(n-(2^k))); else RETURN(1+A059893(n-(2^k))); fi; end;
%p A059893 floor_log_2 := proc(n) local nn,i; nn := n; for i from -1 to n do if(0 = nn) then RETURN(i); fi; nn := floor(nn/2); od; end;
%p A059893 # second Maple program:
%p A059893 a:= proc(n) local i, m, r; m, r:= n, 0;
%p A059893       for i from 0 while m>1 do r:= 2*r +irem(m,2,'m') od;
%p A059893       r +2^i
%p A059893     end:
%p A059893 seq(a(n), n=1..100);  # _Alois P. Heinz_, Feb 28 2015
%t A059893 A059893 = Reap[ For[n=1, n <= 100, n++, a=1; b=n; While[b > 1, a = 2*a + 2*FractionalPart[b/2]; b=Floor[b/2]]; Sow[a]]][[2, 1]] (* _Jean-François Alcover_, Jul 16 2012, after _Harry J. Smith_ *)
%t A059893 ro[n_]:=Module[{idn=IntegerDigits[n,2]},FromDigits[Join[{First[idn]}, Reverse[ Rest[idn]]],2]]; Array[ro,80] (* _Harvey P. Dale_, Oct 24 2012 *)
%o A059893 (PARI) a(n) = my(b=binary(n)); fromdigits(concat(b[1], Vecrev(vector(#b-1, k, b[k+1]))), 2); \\ _Michel Marcus_, Sep 29 2021
%o A059893 (Haskell)
%o A059893 a059893 = foldl (\v b -> v * 2 + b) 1 . init . a030308_row
%o A059893 -- _Reinhard Zumkeller_, May 01 2013
%o A059893 (Scheme, with memoization-macro definec)
%o A059893 (definec (A059893 n) (if (<= n 1) n (let* ((k (- (A000523 n) 1)) (r (A059893 (- n (A000079 k))))) (if (= 2 (floor->exact (/ n (A000079 k)))) (* 2 r) (+ 1 r)))))
%o A059893 ;; _Antti Karttunen_, May 16 2015
%o A059893 (R)
%o A059893 maxrow <- 6 # by choice
%o A059893 a <- 1
%o A059893 for(m in 0:maxrow) for(k in 0:(2^m-1)) {
%o A059893   a[2^(m+1)+    k] <- 2*a[2^m+k]
%o A059893   a[2^(m+1)+2^m+k] <- 2*a[2^m+k] + 1
%o A059893 }
%o A059893 a
%o A059893 # _Yosu Yurramendi_, Mar 20 2017
%o A059893 (R)
%o A059893 maxblock <- 7 # by choice
%o A059893 a <- 1
%o A059893 for(n in 2:2^maxblock){
%o A059893   ones <- which(as.integer(intToBits(n)) == 1)
%o A059893   nbit <- as.integer(intToBits(n))[1:tail(ones, n = 1)]
%o A059893   anbit <- nbit
%o A059893   anbit[1:(length(anbit) - 1)] <- anbit[rev(1:(length(anbit)-1))]
%o A059893   a <- c(a, sum(anbit*2^(0:(length(anbit) - 1))))
%o A059893 }
%o A059893 a
%o A059893 # _Yosu Yurramendi_, Apr 25 2021
%o A059893 (Python)
%o A059893 def a(n): return int('1' + bin(n)[3:][::-1], 2)
%o A059893 print([a(n) for n in range(1, 101)]) # _Indranil Ghosh_, Mar 21 2017
%Y A059893 {A000027, A054429, A059893, A059894} form a 4-group.
%Y A059893 The set of permutations {A059893, A080541, A080542} generates an infinite dihedral group.
%Y A059893 Cf. A000079, A000523, A007931, A030308.
%Y A059893 In other bases: A351702 (balanced ternary), A343150 (Zeckendorf), A343152 (lazy Fibonacci).
%K A059893 easy,nonn,base,nice,look
%O A059893 1,2
%A A059893 _Marc LeBrun_, Feb 06 2001