cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A059905 Index of first half of decomposition of integers into pairs based on A000695.

This page as a plain text file.
%I A059905 #68 Jul 01 2022 09:41:07
%S A059905 0,1,0,1,2,3,2,3,0,1,0,1,2,3,2,3,4,5,4,5,6,7,6,7,4,5,4,5,6,7,6,7,0,1,
%T A059905 0,1,2,3,2,3,0,1,0,1,2,3,2,3,4,5,4,5,6,7,6,7,4,5,4,5,6,7,6,7,8,9,8,9,
%U A059905 10,11,10,11,8,9,8,9,10,11,10,11,12,13,12,13,14,15,14,15,12,13,12,13,14
%N A059905 Index of first half of decomposition of integers into pairs based on A000695.
%C A059905 One coordinate of a recursive non-self-intersecting walk on the square lattice Z^2.
%H A059905 Peter Kagey, <a href="/A059905/b059905.txt">Table of n, a(n) for n = 0..8192</a>
%H A059905 G. M. Morton, <a href="https://dominoweb.draco.res.ibm.com/0dabf9473b9c86d48525779800566a39.html">A Computer Oriented Geodetic Data Base; and a New Technique in File Sequencing</a>, IBM, 1966, with a(n) being section 5.1 step (c).
%H A059905 <a href="/index/Con#coordinates_2D_curves">Index entries for sequences related to coordinates of 2D curves</a>
%F A059905 n = A000695(a(n)) + 2*A000695(A059906(n)).
%F A059905 To get a(n), write n as Sum b_j*2^j, then a(n) = Sum b_(2j)*2^j. - _Vladimir Shevelev_, Nov 13 2008
%F A059905 a(n) = Sum_{k>=0} A030308(n,k)*A077957(k). - _Philippe Deléham_, Oct 18 2011
%F A059905 G.f.: (1-x)^(-1) * Sum_{j>=0} 2^j*x^(2^j)/(1+x^(2^j)). - _Robert Israel_, Aug 12 2015
%F A059905 a(n) = A059906(2*n). - _Velin Yanev_, Dec 01 2016
%e A059905 A000695(a(14)) + 2*A000695(A059906(14)) = A000695(2) + 2*A000695(3) = 4 + 2*5 = 14.
%e A059905 If n=27, then b_0=1, b_1=1, b_2=0, b_3=1, b_4=1. Therefore a(27) = b_0 + b_2*2 + b_4*2^2 = 5. - _Vladimir Shevelev_, Nov 13 2008
%p A059905 f:= proc(n) local L; L:= convert(n,base,2); add(L[2*i+1]*2^i,i=0..floor((nops(L)-1)/2)) end;
%p A059905 map(f, [$0..256]); # _Robert Israel_, Aug 12 2015
%t A059905 a[n_] := Module[{P}, (P = Partition[IntegerDigits[2n, 2]//Reverse, 2][[All, 2]]).(2^(Range[Length[P]]-1))]; Array[a, 100, 0] (* _Jean-François Alcover_, Apr 24 2019 *)
%o A059905 (Ruby)
%o A059905 def a(n)
%o A059905   (0..n.bit_length/2).to_a.map { |i| (n >> 2 * i & 1) << i}.reduce(:+)
%o A059905 end # _Peter Kagey_, Aug 12 2015
%o A059905 (Python)
%o A059905 def a(n): return sum([(n>>2*i&1)<<i for i in range(len(bin(n)[2:])//2 + 1)])
%o A059905 print([a(n) for n in range(101)]) # _Indranil Ghosh_, Jun 25 2017, after Ruby code by _Peter Kagey_
%o A059905 (Python)
%o A059905 def A059905(n): return int(bin(n)[:1:-2][::-1],2) # _Chai Wah Wu_, Jun 30 2022
%o A059905 (PARI) A059905(n) = { my(t=1,s=0); while(n>0, s += (n%2)*t; n \= 4; t *= 2); (s); }; \\ _Antti Karttunen_, Apr 14 2018
%Y A059905 Cf. A000695, A030308, A059906, A057300, A077957.
%K A059905 easy,nonn,look
%O A059905 0,5
%A A059905 _Marc LeBrun_, Feb 07 2001