cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A059906 Index of second half of decomposition of integers into pairs based on A000695.

This page as a plain text file.
%I A059906 #54 Jun 30 2022 14:43:20
%S A059906 0,0,1,1,0,0,1,1,2,2,3,3,2,2,3,3,0,0,1,1,0,0,1,1,2,2,3,3,2,2,3,3,4,4,
%T A059906 5,5,4,4,5,5,6,6,7,7,6,6,7,7,4,4,5,5,4,4,5,5,6,6,7,7,6,6,7,7,0,0,1,1,
%U A059906 0,0,1,1,2,2,3,3,2,2,3,3,0,0,1,1,0,0,1,1,2,2,3,3,2,2,3,3,4,4,5,5,4,4,5,5,6
%N A059906 Index of second half of decomposition of integers into pairs based on A000695.
%C A059906 One coordinate of a recursive non-self-intersecting walk on the square lattice Z^2.
%H A059906 Rémy Sigrist, <a href="/A059906/b059906.txt">Table of n, a(n) for n = 0..8192</a>
%H A059906 G. M. Morton, <a href="https://dominoweb.draco.res.ibm.com/0dabf9473b9c86d48525779800566a39.html">A Computer Oriented Geodetic Data Base; and a New Technique in File Sequencing</a>, IBM, 1966, with a(n) being section 5.1 step (b).
%H A059906 <a href="/index/Con#coordinates_2D_curves">Index entries for sequences related to coordinates of 2D curves</a>
%F A059906 n = A000695(A059905(n)) + 2*A000695(a(n))
%F A059906 To get a(n), write n as Sum b_j*2^j, then a(n) = Sum b_(2j+1)*2^j. - _Vladimir Shevelev_, Nov 13 2008
%F A059906 a(n) = Sum_{k>=0} A030308(n,k)*b(k) with b(0)=0 and b(k)=A077957(k-1) for k>0. - _Philippe Deléham_, Oct 18 2011
%F A059906 Conjecture: a(n) = n - (1/2)*Sum_{k=1..n} (sqrt(2)^A007814(k) + (-sqrt(2))^A007814(k)) = -Sum_{k=1..n} (-1)^k * 2^floor(k/2) * floor(n/2^k). - _Velin Yanev_, Dec 01 2016
%e A059906 A000695(A059905(14)) + 2*A000695(a(14)) = A000695(2) + 2*A000695(3) = 4 + 2*5 = 14.
%e A059906 If n=27, then b_0=1, b_1=1, b_2=0, b_3=1, b_4=1. Therefore a(27) = b_1 + b_3*2 = 3. - _Vladimir Shevelev_, Nov 13 2008
%t A059906 a[n_] := Module[{P}, (P = Partition[IntegerDigits[n, 2]//Reverse, 2][[All, 2]]).(2^(Range[Length[P]]-1))]; Array[a, 105, 0] (* _Jean-François Alcover_, Apr 24 2019 *)
%o A059906 (Python)
%o A059906 def a(n):
%o A059906     x=[int(t) for t in list(bin(n)[2:])[::-1]]
%o A059906     return sum(x[2*i + 1]*2**i for i in range(int(len(x)//2)))
%o A059906 print([a(n) for n in range(105)]) # _Indranil Ghosh_, Jun 25 2017
%o A059906 (Python)
%o A059906 def A059906(n): return 0 if n < 2 else int(bin(n)[-2:1:-2][::-1],2) # _Chai Wah Wu_, Jun 30 2022
%o A059906 (PARI) A059906(n) = { my(t=1,s=0); while(n>0, s += ((n%4)>=2)*t; n \= 4; t *= 2); (s); }; \\ _Antti Karttunen_, Apr 14 2018
%Y A059906 Cf. A000695, A057300, A059905.
%K A059906 easy,look,nonn
%O A059906 0,9
%A A059906 _Marc LeBrun_, Feb 07 2001