This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A059945 #23 Mar 09 2024 13:00:50 %S A059945 0,0,4,39,280,1815,11284,68859,416560,2509455,15086764,90610179, %T A059945 543928840,3264374295,19588645444,117539063499,705255937120, %U A059945 4231600258335,25389795391324,152339353740819,914037866361400,5484232429393575,32905410268988404,197432508689714139 %N A059945 Number of 4-block bicoverings of an n-set. %D A059945 I. P. Goulden and D. M. Jackson, Combinatorial Enumeration, John Wiley and Sons, N.Y., 1983. %H A059945 Andrew Howroyd, <a href="/A059945/b059945.txt">Table of n, a(n) for n = 1..200</a> %H A059945 <a href="/index/Rec#order_04">Index entries for linear recurrences with constant coefficients</a>, signature (12,-47,72,-36). %F A059945 a(n) = (1/4!)*(6^n - 4*3^n - 3*2^n + 12). %F A059945 E.g.f. for m-block bicoverings of an n-set is exp(-x-1/2*x^2*(exp(y)-1))*Sum_{i=0..inf} x^i/i!*exp(binomial(i, 2)*y). %F A059945 a(n) = 12*a(n-1) - 47*a(n-2) + 72*a(n-3) - 36*a(n-4) for n > 4. - _Harvey P. Dale_, Aug 10 2011 %F A059945 G.f.: -x^3*(9*x-4) / ((x-1)*(2*x-1)*(3*x-1)*(6*x-1)). - _Colin Barker_, Jan 11 2013 %e A059945 There are 4 4-block bicoverings of a 3-set: {{1},{2},{3},{1,2,3}}, {{2},{3},{1,2},{1,3}}, {{1},{3},{1,2},{2,3}} and {{1},{2},{1,3},{2,3}}. %t A059945 With[{c=1/4!},Table[c(6^n-4 3^n-3 2^n+12),{n,20}]] (* or *) LinearRecurrence[ {12,-47,72,-36},{0,0,4,39},20] (* _Harvey P. Dale_, Aug 10 2011 *) %o A059945 (PARI) a(n) = {(1/4!)*(6^n - 4*3^n - 3*2^n + 12)} \\ _Andrew Howroyd_, Jan 29 2020 %Y A059945 Column k=4 of A059443. %Y A059945 Cf. A002718. %K A059945 easy,nonn %O A059945 1,3 %A A059945 _Vladeta Jovovic_, Feb 14 2001 %E A059945 More terms from _Colin Barker_, Jan 11 2013