A059960 Smaller term of a pair of twin primes such that prime factors of their average are only 2 and 3.
5, 11, 17, 71, 107, 191, 431, 1151, 2591, 139967, 472391, 786431, 995327, 57395627, 63700991, 169869311, 4076863487, 10871635967, 2348273369087, 56358560858111, 79164837199871, 84537841287167, 150289495621631, 578415690713087, 1141260857376767
Offset: 1
Keywords
Examples
a(11)+1 = 2*2*2*3*3*3*3*3*3*3*3*3*3 = 472392.
Links
- Ray Chandler, Table of n, a(n) for n = 1..61 (terms < 10^1000, first 49 terms from T. D. Noe)
Crossrefs
Programs
-
Mathematica
nn=10^15; Sort[Reap[Do[n=2^i 3^j; If[n<=nn && PrimeQ[n-1] && PrimeQ[n+1], Sow[n-1]], {i, Log[2, nn]}, {j, Log[3, nn]}]][[2, 1]]] Select[Select[Partition[Prime[Range[38*10^5]],2,1],#[[2]]-#[[1]]==2&][[All,1]],FactorInteger[#+1][[All,1]]=={2,3}&] (* The program generates the first 15 terms of the sequence. *) seq[max_] := Select[Sort[Flatten[Table[2^i*3^j - 1, {i, 1, Floor[Log2[max]]}, {j, 1, Floor[Log[3, max/2^i]]}]]], And @@ PrimeQ[# + {0, 2}] &]; seq[2*10^15] (* Amiram Eldar, Aug 27 2024 *)
Formula
a(n) = A027856(n+1) - 1. - Amiram Eldar, Mar 17 2025
Comments