This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A060014 #65 May 09 2025 19:42:10 %S A060014 1,1,3,13,67,471,3271,31333,299223,3291487,39020911,543960561, %T A060014 7466726983,118551513523,1917378505407,32405299019941,608246253790591, %U A060014 12219834139189263,253767339725277823,5591088918313739017,126036990829657056711,2956563745611392385211 %N A060014 Sum of orders of all permutations of n letters. %C A060014 Conjecture: This sequence eventually becomes cyclic mod n for all n. - _Isaac Saffold_, Dec 01 2019 %D A060014 D. S. Mitrinovic et al., Handbook of Number Theory, Kluwer, Section XIII.2, p. 460. %H A060014 Alois P. Heinz, <a href="/A060014/b060014.txt">Table of n, a(n) for n = 0..170</a> %H A060014 FindStat - Combinatorial Statistic Finder, <a href="http://www.findstat.org/St000058/">The order of a permutation</a> %H A060014 Joshua Harrington, Lenny Jones, and Alicia Lamarche, <a href="http://dx.doi.org/10.1155/2014/835125">Characterizing Finite Groups Using the Sum of the Orders of the Elements</a>, International Journal of Combinatorics, Volume 2014, Article ID 835125, 8 pages. %F A060014 E.g.f.: Sum_{n>0} (n*Sum_{i|n} (moebius(n/i)*Product_{j|i} exp(x^j/j))). - _Vladeta Jovovic_, Dec 29 2004; The sum over n should run to at least A000793(k) for producing the k-th entry. - _Wouter Meeussen_, Jun 16 2012 %F A060014 a(n) = Sum_{k>=1} k* A057731(n,k). - _R. J. Mathar_, Aug 31 2017 %e A060014 For n = 4 there is 1 permutation of order 1, 9 permutations of order 2, 8 of order 3 and 6 of order 4, for a total of 67. %p A060014 b:= proc(n, g) option remember; `if`(n=0, g, add((j-1)! %p A060014 *b(n-j, ilcm(g, j))*binomial(n-1, j-1), j=1..n)) %p A060014 end: %p A060014 a:= n-> b(n, 1): %p A060014 seq(a(n), n=0..30); # _Alois P. Heinz_, Jul 11 2017 %t A060014 CoefficientList[Series[Sum[n Fold[#1+MoebiusMu[n/#2] Apply[Times, Exp[x^#/#]&/@Divisors[#2] ]&,0,Divisors[n]],{n,Max[Apply[LCM,Partitions[19],1]]}],{x,0,19}],x] Range[0,19]! (* _Wouter Meeussen_, Jun 16 2012 *) %t A060014 a[ n_] := If[ n < 1, Boole[n == 0], 1 + Total @ Apply[LCM, Map[Length, First /@ PermutationCycles /@ Drop[Permutations @ Range @ n, 1], {2}], 1]]; (* _Michael Somos_, Aug 19 2018 *) %o A060014 (PARI) \\ Naive method -- sum over cycles directly %o A060014 cycleDecomposition(v:vec)={ %o A060014 my(cyc=List(), flag=#v+1, n); %o A060014 while((n=vecmin(v))<#v, %o A060014 my(cur=List(), i, tmp); %o A060014 while(v[i++]!=n,); %o A060014 while(v[i] != flag, %o A060014 listput(cur, tmp=v[i]); %o A060014 v[i]=flag; %o A060014 i=tmp %o A060014 ); %o A060014 if(#cur>1, listput(cyc, Vec(cur))) \\ Omit length-1 cycles %o A060014 ); %o A060014 Vec(cyc) %o A060014 }; %o A060014 permutationOrder(v:vec)={ %o A060014 lcm(apply(length, cycleDecomposition(v))) %o A060014 }; %o A060014 a(n)=sum(i=0,n!-1,permutationOrder(numtoperm(n,i))) %o A060014 \\ _Charles R Greathouse IV_, Nov 06 2014 %o A060014 (PARI) %o A060014 A060014(n) = %o A060014 { %o A060014 my(factn = n!, part, nb, i, j, res = 0); %o A060014 forpart(part = n, %o A060014 nb = 1; j = 1; %o A060014 for(i = 1, #part, %o A060014 if (i == #part || part[i + 1] != part[i], %o A060014 nb *= (i + 1 - j)! * part[i]^(i + 1 - j); %o A060014 j = i + 1)); %o A060014 res += (factn / nb) * lcm(Vec(part))); %o A060014 res; %o A060014 } \\ _Jerome Raulin_, Jul 11 2017 (much faster, O(A000041(n)) vs O(n!)) %Y A060014 Cf. A000793, A028418, A060015, A057731, A074859, A290932, A346066. %K A060014 nonn,nice,easy %O A060014 0,3 %A A060014 _N. J. A. Sloane_, Mar 17 2001 %E A060014 More terms from _Vladeta Jovovic_, Mar 18 2001 %E A060014 More terms from _Alois P. Heinz_, Feb 14 2013