This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A060023 #27 Sep 08 2022 08:45:03 %S A060023 1,0,1,1,1,0,1,-1,-1,-3,-4,-7,-8,-13,-15,-20,-24,-31,-35,-44,-50,-60, %T A060023 -68,-80,-89,-104,-115,-131,-145,-164,-179,-201,-219,-243,-264,-291, %U A060023 -314,-345,-371,-404,-434,-471,-503,-544,-580,-624,-664,-712,-755,-808,-855,-911,-963,-1024,-1079,-1145 %N A060023 Expansion of (1-x-x^N)/((1-x)(1-x^2)(1-x^3)...(1-x^N)) for N = 4. %C A060023 Difference of the number of partitions of n+3 into 3 parts and the number of partitions of n+3 into 4 parts. - _Wesley Ivan Hurt_, Apr 16 2019 %H A060023 Colin Barker, <a href="/A060023/b060023.txt">Table of n, a(n) for n = 0..1000</a> %H A060023 P. A. MacMahon, <a href="https://doi.org/10.1112/plms/s1-17.1.139">Perpetual reciprocants</a>, Proc. London Math. Soc., 17 (1886), 139-151; Coll. Papers II, pp. 584-596. %H A060023 <a href="/index/Par#part">Index entries for sequences related to partitions</a> %H A060023 <a href="/index/Rec#order_10">Index entries for linear recurrences with constant coefficients</a>, signature (1, 1, 0, 0, -2, 0, 0, 1, 1, -1). %F A060023 a(n) = A069905(n+3) - A026810(n+3). - _Wesley Ivan Hurt_, Apr 16 2019 %F A060023 From _Colin Barker_, Apr 17 2019: (Start) %F A060023 G.f.: (1 - x - x^4) / ((1 - x)^4*(1 + x)^2*(1 + x^2)*(1 + x + x^2)). %F A060023 a(n) = a(n-1) + a(n-2) - 2*a(n-5) + a(n-8) + a(n-9) - a(n-10) for n>9. %F A060023 (End) %t A060023 CoefficientList[Series[(1-x-x^4)/Times@@(1-x^Range[4]),{x,0,60}],x] (* or *) LinearRecurrence[{1,1,0,0,-2,0,0,1,1,-1},{1,0,1,1,1,0,1,-1,-1,-3},70] (* _Harvey P. Dale_, Jan 14 2015 *) %o A060023 (Magma) I:=[1,0,1,1,1,0,1,-1,-1,-3]; [n le 10 select I[n] else Self(n-1)+Self(n-2)-2*Self(n-5)+Self(n-8)+Self(n-9)-Self(n-10): n in [1..60]]; // _Vincenzo Librandi_, Jun 23 2015 %o A060023 (PARI) Vec((1 - x - x^4) / ((1 - x)^4*(1 + x)^2*(1 + x^2)*(1 + x + x^2)) + O(x^40)) \\ _Colin Barker_, Apr 17 2019 %Y A060023 Cf. A026810, A069905. %Y A060023 Cf. For other values of N: A060022 (N=3), this sequence (N=4), A060024 (N=5), A060025 (N=6), A060026 (N=7), A060027 (N=8), A060028 (N=9), A060029 (N=10). %K A060023 sign,easy %O A060023 0,10 %A A060023 _N. J. A. Sloane_, Mar 17 2001