A060034 Number of partitions of n such that all parts are neither relatively prime (cf. A000837) nor are they periodic with each part occurring the same number of times (cf. A024994).
0, 0, 0, 0, 0, 0, 0, 1, 0, 3, 0, 4, 0, 9, 3, 12, 0, 22, 0, 28, 9, 43, 0, 63, 3, 82, 19, 107, 0, 170, 0, 189, 43, 258, 12, 372, 0, 435, 82, 557, 0, 808, 0, 900, 162, 1150, 0, 1599, 9, 1836, 258, 2252, 0, 3111, 46, 3476, 435, 4308, 0, 5827, 0, 6501, 727, 7917, 85
Offset: 1
Examples
a(15) = 3 because partitions 6+3+3+3, 6+6+3 and 9+3+3 satisfy the description and A000041(15) - (A000837(15) + A024994(15)) = 176 - (167 + 6) = 3.
Programs
-
Mathematica
A000837[n_] := Sum[ MoebiusMu[n/d]*PartitionsP[d], {d, Divisors[n]}]; A024994[n_] := Sum[ PartitionsQ[k], {k, Divisors[n] // Most}]; a[n_] := PartitionsP[n] - (A000837[n] + A024994[n]); Table[a[n], {n, 1, 65}] (* Jean-François Alcover, Oct 03 2013 *)
Extensions
More terms from Naohiro Nomoto, Mar 01 2002