cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A060036 Triangular array T read by rows: T(n,k) = k^2 mod n, for k = 1,2,...,n-1, n = 2,3,...

This page as a plain text file.
%I A060036 #18 Dec 17 2018 05:30:19
%S A060036 1,1,1,1,0,1,1,4,4,1,1,4,3,4,1,1,4,2,2,4,1,1,4,1,0,1,4,1,1,4,0,7,7,0,
%T A060036 4,1,1,4,9,6,5,6,9,4,1,1,4,9,5,3,3,5,9,4,1,1,4,9,4,1,0,1,4,9,4,1,1,4,
%U A060036 9,3,12,10,10,12,3,9,4,1,1,4,9,2,11,8,7,8,11,2,9,4,1,1,4,9,1,10,6,4,4,6,10
%N A060036 Triangular array T read by rows: T(n,k) = k^2 mod n, for k = 1,2,...,n-1, n = 2,3,...
%C A060036 T(n,k) = A048152(n-1,k), 1 <= k < n; T(2*n-1,n-1) = A123684(n-1) = A225126(n-1). - _Reinhard Zumkeller_, Apr 29 2013
%H A060036 T. D. Noe, <a href="/A060036/b060036.txt">Rows n = 2..100 of triangle, flattened</a>
%e A060036 The triangle T(n,k) begins:
%e A060036 n\k 1 2 3 4 5 6 7 8 9 10 11 ...
%e A060036 -------------------------------
%e A060036 2:  1
%e A060036 3:  1 1
%e A060036 4:  1 0 1
%e A060036 5:  1 4 4 1
%e A060036 6:  1 4 3 4 1
%e A060036 7:  1 4 2 2 4 1
%e A060036 6:  1 4 1 0 1 4 1
%e A060036 9:  1 4 0 7 7 0 4 1
%e A060036 10: 1 4 9 6 5 6 9 4 1
%e A060036 11: 1 4 9 5 3 3 5 9 4  1
%e A060036 12: 1 4 9 4 1 0 1 4 9  4  1
%e A060036 ...  reformatted by - _Wolfdieter Lang_, Dec 17 2018
%t A060036 Flatten[Table[PowerMod[k,2,n],{n,2,20},{k,n-1}]] (* _Harvey P. Dale_, Feb 27 2012 *)
%o A060036 (PARI) { n=1; for (m=2, 46, for (k=1, m-1, write("b060036.txt", n++, " ", k^2 % m)); ) } \\ _Harry J. Smith_, Jul 01 2009
%o A060036 (Haskell)
%o A060036 a060036 n k = a060036_tabl !! (n-2) !! (k-1)
%o A060036 a060036_row n = a060036_tabl !! (n-2)
%o A060036 a060036_tabl = map init $ tail a048152_tabl
%o A060036 -- _Reinhard Zumkeller_, Apr 29 2013
%Y A060036 Cf. A048152, A060037.
%Y A060036 Cf. A048153 (row sums).
%K A060036 nonn,tabl,easy,nice
%O A060036 2,8
%A A060036 _N. J. A. Sloane_, Mar 17 2001
%E A060036 More terms from Larry Reeves (larryr(AT)acm.org), Mar 20 2001