cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A060047 Triangle of generalized sum of divisors function, read by rows.

This page as a plain text file.
%I A060047 #23 Sep 16 2023 10:41:08
%S A060047 1,2,4,1,4,2,6,4,8,8,8,14,8,1,18,13,2,28,12,4,40,12,8,52,16,14,70,14,
%T A060047 24,88,16,40,104,24,1,56,140,16,2,84,168,18,4,122,196,26,8,168,240,20,
%U A060047 14,232,278,24,24,312,320,32,40,408,380,24,64,528,440,24,100,672,504
%N A060047 Triangle of generalized sum of divisors function, read by rows.
%C A060047 Lengths of rows are 1 1 1 2 2 2 2 2 3 3 3 3 3 3 3 ... (A000196).
%H A060047 G. E. Andrews and S. C. F. Rose, <a href="http://arxiv.org/abs/1010.5769">MacMahon's sum-of-divisors functions, Chebyshev polynomials, and Quasi-modular forms</a>, arXiv:1010.5769 [math.NT], 2010.
%H A060047 P. A. MacMahon, <a href="https://doi.org/10.1112/plms/s2-19.1.75">Divisors of numbers and their continuations in the theory of partitions</a>, Proc. London Math. Soc., 19 (1919), 75-113; Coll. Papers II, pp. 303-341.
%F A060047 T(n, k) = sum of s_1*s_2*...*s_k where s_1, s_2, ..., s_k are such that s_1*(2*m_1-1) + s_2*(2*m_2-1) + ... + s_k*(2*m_k-1) = n and the sum is over all such k-partitions of n.
%F A060047 G.f. for k-th diagonal (the k-th row of the sideways triangle shown in the example): Sum_{ m_1 < m_2 < ... < m_k} q^(2*m_1+2*m_2+...+2*m_k-k)/((1-q^{2*m_1-1})*(1-q^{2*m_2-1})*...*(1-q^{2*m_k-1}))^2 = Sum_n T(n, k)*q^n.
%F A060047 G.f. for k-th diagonal: (-1)^k * (1/k) * ( Sum_{j>=k} (-1)^j * j * binomial(j+k-1,2*k-1) * q^(j^2) ) / ( 1 + 2 * Sum_{j>=1} (-q)^(j^2) ). - _Seiichi Manyama_, Sep 15 2023
%e A060047 Triangle turned on its side begins:
%e A060047   1  2  4  4  6  8  8  8 13 12 12 ...
%e A060047            1  2  4  8 14 18 28 40 ...
%e A060047                           1  2  4 ...
%e A060047 For example, T(6,1) = 8, T(6,2) = 4.
%Y A060047 Diagonals give A002131, A002132, A060046, A365666, A365667.
%Y A060047 Cf. A060043, A060044, A060177, A060184.
%K A060047 nonn,tabf,easy,nice
%O A060047 1,2
%A A060047 _N. J. A. Sloane_, Mar 19 2001
%E A060047 More terms from _Naohiro Nomoto_, Jan 24 2002