cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A060058 Triangle of numbers related to A000330 (sum of squares) and A000364 (Euler numbers).

This page as a plain text file.
%I A060058 #25 May 04 2025 03:26:05
%S A060058 1,1,1,1,5,5,1,14,61,61,1,30,331,1385,1385,1,55,1211,12284,50521,
%T A060058 50521,1,91,3486,68060,663061,2702765,2702765,1,140,8526,281210,
%U A060058 5162421,49164554,199360981,199360981,1,204,18522,948002,28862471,510964090,4798037791,19391512145,19391512145
%N A060058 Triangle of numbers related to A000330 (sum of squares) and A000364 (Euler numbers).
%H A060058 Wolfdieter Lang, <a href="/A060058/a060058.txt">First 9 rows</a>.
%F A060058 a(n, m) = a(n-1, m) + ((n+1-m)^2)*a(n, m-1), a(n, -1) := 0, a(0, 0) = 1, a(n, m) = 0 if n < m.
%F A060058 a(n, m) = ay(n-m+1, m) if n >= m >= 0, with the rectangular array ay(n, m) := Sum_{j=1..n} (j^2)*ay(j+1, m-1), n >= 0, m >= 1; input: ay(n, 0)=1 (iterated sums of squares).
%F A060058 G.f. for m-th column: 1/(1-x) for m=0, (x^m)*(Sum_{k=0..m} A060063(m, k)*x^k)/(1-x)^(3*m+1), m >= 1.
%F A060058 Recursion for g.f.s for m-th column: (1-x)*G(m, x) = x*G''(m-1, x) - G'(m-1, x) + G(m-1, x)/x, m >= 2; G(1, x) = x*(1+x)/(1-x)^4; the apostrophe denotes differentiation w.r.t. x. G(0, x) = 1/(1-x). - _Wolfdieter Lang_, Feb 13 2004
%e A060058 Triangle T(n, k) starts:
%e A060058   [0] 1;
%e A060058   [1] 1,   1;
%e A060058   [2] 1,   5,    5;
%e A060058   [3] 1,  14,   61,     61;
%e A060058   [4] 1,  30,  331,   1385,    1385;
%e A060058   [5] 1,  55, 1211,  12284,   50521,    50521;
%e A060058   [6] 1,  91, 3486,  68060,  663061,  2702765,   2702765;
%e A060058   [7] 1, 140, 8526, 281210, 5162421, 49164554, 199360981, 199360981;
%e A060058   ...
%p A060058 T := proc(n, k) option remember; if k = 0 then 1 else if k = n then T(n, k-1) else (n - k + 1)^2 * T(n, k - 1) + T(n - 1, k) fi fi end:
%p A060058 seq(print(seq(T(n, k), k=0..n)), n=0..7);  # _Peter Luschny_, Sep 30 2023
%t A060058 a[_, -1] = 0; a[0, 0] = 1; a[n_, m_] /; n < m = 0; a[n_, m_] := a[n, m] = a[n-1, m] + (n+1-m)^2*a[n, m-1]; Table[a[n, m], {n, 0, 8}, {m, 0, n}] // Flatten (* _Jean-François Alcover_, Jul 09 2013 *)
%Y A060058 Cf. A060059 (row sums), A000364 (main diagonal Euler numbers).
%Y A060058 Columns: A000012 (powers of 1), A000330 (sum of squares), A060060-2 for m=0,...,4.
%Y A060058 See triangle A060074.
%K A060058 nonn,easy,tabl
%O A060058 0,5
%A A060058 _Wolfdieter Lang_, Mar 16 2001