cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A060061 Fourth column of triangle A060058.

Original entry on oeis.org

61, 1385, 12284, 68060, 281210, 948002, 2749340, 7097948, 16700255, 36419955, 74551048, 144631240, 267951892, 476948260, 819683560, 1365672424, 2213323585, 3499318141, 5410278500, 8197124100
Offset: 0

Views

Author

Wolfdieter Lang, Mar 16 2001

Keywords

Crossrefs

Programs

  • Mathematica
    Table[Binomial[n+6,6]*(280*n^3+2436*n^2+5906n+3843)/63,{n,0,19}] (* Indranil Ghosh, Feb 21 2017 *)
  • Python
    import math
    def C(n, r):
        f=math.factorial
        return f(n)//f(r)//f(n-r)
    def A060061(n):
        return (C(n+6, 6)*(280*n**3+2436*n**2+5906*n+3843))//63 # Indranil Ghosh, Feb 21 2017

Formula

a(n) = Sum_{j3=1..n+1} j3^2*Sum_{j2=1..j3+1} j2^2*Sum_{j1=1..j2+1} j1^2.
a(n) = A060058(n+3, 3) = binomial(n+6, 6)*(280*n^3+2436*n^2+5906*n+3843)/(7*9).
G.f.: (61+775*x+1179*x^2+225*x^3)/(1-x)^10 = p(3, x)/(1-x)^(3*3+1) with p(3, x)=sum(A060063(3, m)*x^m, m=0..3).