cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A060063 Triangle of coefficients of certain polynomials used for G.f.s of columns of triangle A060058.

This page as a plain text file.
%I A060063 #14 Aug 28 2019 16:44:46
%S A060063 1,1,1,5,26,9,61,775,1179,225,1385,32516,114318,87156,11025,50521,
%T A060063 1894429,11982834,20371266,9652725,893025,2702765,148008446,
%U A060063 1472351967,4417978068,4546174779,1502513550
%N A060063 Triangle of coefficients of certain polynomials used for G.f.s of columns of triangle A060058.
%C A060063 The row polynomials p(n,x) (rising powers of x) appear as numerators of the column g.f.s of triangle A060058.
%C A060063 First column (m=0) gives A000364 (Euler numbers). See A091742, A091743, A091744 for columns m=1..3.
%C A060063 The main diagonal gives A001818. The row sums give A052502. The alternating row sums give A091745.
%H A060063 W. Lang, <a href="/A060063/a060063.txt">First 8 rows</a>.
%F A060063 The row polynomials p(n, x) := Sum_{m=0..n} a(n, m)*x^m satisfy the differential equation: p(n, x) = x*((1-x)^2)*(d^2/dx^2)p(n-1, x) + (1+6*(n-1)*x+(5-6*n)*x^2)*(d/dx)p(n-1, x) + (3*n-2)*(1+(3*n-2)*x)*p(n-1, x), n >= 1, with input p(0, x)=1. - _Wolfdieter Lang_, Feb 13 2004
%e A060063 Triangle begins:
%e A060063   {1};
%e A060063   {1,1};
%e A060063   {5,26,9};     <-- p(2,n)=5+26*x+9*x^2.
%e A060063   {61,775,1179,225};
%e A060063   ...
%K A060063 nonn,easy,tabl
%O A060063 0,4
%A A060063 _Wolfdieter Lang_, Mar 16 2001