A060086 Convolution triangle A059594 with extra first column.
1, 0, 1, 0, 1, 1, 0, 2, 2, 1, 0, 2, 5, 3, 1, 0, 3, 8, 9, 4, 1, 0, 3, 14, 19, 14, 5, 1, 0, 4, 20, 39, 36, 20, 6, 1, 0, 4, 30, 69, 85, 60, 27, 7, 1, 0, 5, 40, 119, 176, 160, 92, 35, 8, 1, 0, 5, 55, 189, 344, 376, 273, 133, 44, 9
Offset: 0
Examples
{1}; {0,1}; {0,1,1}; {0,2,2,1}; ... Triangle begins : 1 0, 1 0, 1, 1 0, 2, 2, 1 0, 2, 5, 3, 1 0, 3, 8, 9, 4, 1 0, 3, 14, 19, 14, 5, 1
Crossrefs
Cf. A059594,
Programs
-
Mathematica
t[0, 0] = 1; t[, 0] = 0; t[n, m_] := Sum[ Sum[ Binomial[j, 2*j-3*k-m+n]*(-1)^(j-k)*Binomial[k, j], {j, 0, k}]*Binomial[m+k-1, m-1], {k, 0, n-m}]; Table[t[n, m], {n, 0, 10}, {m, 0, n}] // Flatten (* Jean-François Alcover, Jun 21 2013 *)
Formula
G.f.for column m >= 0: (x/((1-x^2)*(1-x)))^m.
T(n,k) = T(n-1,k-1) + T(n-1,k) + T(n-2,k) - T(n-3,k) with T(n,0) = 0^n. - Philippe Deléham, Feb 24 2012
G.f.: (1-x-x^2+x^3)/(1-x-x^2+x^3-y*x). - Philippe Deléham, Feb 24 2012
Sum_{k, 0<=k<=n} T(n,k)*2^k = A181301(n). - Philippe Deléham, Feb 24 2012
Comments