cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A060097 Denominator of coefficients of Euler polynomials (rising powers).

This page as a plain text file.
%I A060097 #18 Dec 30 2024 12:37:49
%S A060097 1,2,1,1,1,1,4,1,2,1,1,1,1,1,1,2,1,2,1,2,1,1,1,1,1,1,1,1,8,1,2,1,4,1,
%T A060097 2,1,1,1,1,1,1,1,1,1,1,2,1,2,1,1,1,1,1,2,1,1,1,1,1,1,1,1,1,1,1,1,4,1,
%U A060097 2,1,4,1,1,1,4,1,2,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,1,2,1,2,1,2,1,2,1,2,1,2,1
%N A060097 Denominator of coefficients of Euler polynomials (rising powers).
%D A060097 M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 809.
%D A060097 Jerome Spanier and Keith B. Oldham, "Atlas of Functions", Hemisphere Publishing Corp., 1987, chapter 20, equations 20:4:1 - 20:4:8 at pages 177-178.
%H A060097 M. Abramowitz and I. A. Stegun, eds., <a href="http://www.convertit.com/Go/ConvertIt/Reference/AMS55.ASP">Handbook of Mathematical Functions</a>, National Bureau of Standards, Applied Math. Series 55, Tenth Printing, 1972 [alternative scanned copy].
%e A060097 The rational triangle A060096(n,m)/a(n,m) starts
%e A060097   n\m  0    1    2    3    4    5    6    7  8  ...
%e A060097   0:   1
%e A060097   1: -1/2   1
%e A060097   2:   0   -1    1
%e A060097   3:  1/4   0  -3/2   1
%e A060097   4:   0    1    0   -2    1
%e A060097   5: -1/2   0   5/2   0  -5/2   1
%e A060097   6:   0   -3    0    5    0   -3    1
%e A060097   7: 17/8   0 -21/2   0  35/4   0  -7/2   1
%e A060097   8:   0   17    0  -28    0   14    0   -4  1
%e A060097   ...
%t A060097 Denominator[Flatten[Table[CoefficientList[EulerE[n, x], x], {n, 0, 13}]]] (* _Jean-François Alcover_, Apr 29 2011 *)
%Y A060097 For numerators see A060096.
%K A060097 nonn,easy,tabl,frac
%O A060097 0,2
%A A060097 _Wolfdieter Lang_, Mar 29 2001