This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A060097 #18 Dec 30 2024 12:37:49 %S A060097 1,2,1,1,1,1,4,1,2,1,1,1,1,1,1,2,1,2,1,2,1,1,1,1,1,1,1,1,8,1,2,1,4,1, %T A060097 2,1,1,1,1,1,1,1,1,1,1,2,1,2,1,1,1,1,1,2,1,1,1,1,1,1,1,1,1,1,1,1,4,1, %U A060097 2,1,4,1,1,1,4,1,2,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,1,2,1,2,1,2,1,2,1,2,1,2,1 %N A060097 Denominator of coefficients of Euler polynomials (rising powers). %D A060097 M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 809. %D A060097 Jerome Spanier and Keith B. Oldham, "Atlas of Functions", Hemisphere Publishing Corp., 1987, chapter 20, equations 20:4:1 - 20:4:8 at pages 177-178. %H A060097 M. Abramowitz and I. A. Stegun, eds., <a href="http://www.convertit.com/Go/ConvertIt/Reference/AMS55.ASP">Handbook of Mathematical Functions</a>, National Bureau of Standards, Applied Math. Series 55, Tenth Printing, 1972 [alternative scanned copy]. %e A060097 The rational triangle A060096(n,m)/a(n,m) starts %e A060097 n\m 0 1 2 3 4 5 6 7 8 ... %e A060097 0: 1 %e A060097 1: -1/2 1 %e A060097 2: 0 -1 1 %e A060097 3: 1/4 0 -3/2 1 %e A060097 4: 0 1 0 -2 1 %e A060097 5: -1/2 0 5/2 0 -5/2 1 %e A060097 6: 0 -3 0 5 0 -3 1 %e A060097 7: 17/8 0 -21/2 0 35/4 0 -7/2 1 %e A060097 8: 0 17 0 -28 0 14 0 -4 1 %e A060097 ... %t A060097 Denominator[Flatten[Table[CoefficientList[EulerE[n, x], x], {n, 0, 13}]]] (* _Jean-François Alcover_, Apr 29 2011 *) %Y A060097 For numerators see A060096. %K A060097 nonn,easy,tabl,frac %O A060097 0,2 %A A060097 _Wolfdieter Lang_, Mar 29 2001