cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A060098 Triangle of partial sums of column sequences of triangle A060086, read by rows.

This page as a plain text file.
%I A060098 #27 May 07 2023 18:27:41
%S A060098 1,1,1,1,2,1,1,4,3,1,1,6,8,4,1,1,9,16,13,5,1,1,12,30,32,19,6,1,1,16,
%T A060098 50,71,55,26,7,1,1,20,80,140,140,86,34,8,1,1,25,120,259,316,246,126,
%U A060098 43,9,1,1,30,175,448,660,622,399,176,53,10,1
%N A060098 Triangle of partial sums of column sequences of triangle A060086, read by rows.
%C A060098 In the language of the Shapiro et al. reference (given in A053121) such a lower triangular (ordinary) convolution array, considered as a matrix, belongs to the Riordan-group. The g.f. for the row polynomials p(n,x) = Sum_{m=0..n} a(n,m)*x^m is (1/(1-x*z/((1-z^2)*(1-z))))/(1-z).
%C A060098 Row sums give A052534. Column sequences (without leading zeros) give A000012 (powers of 1), A002620(n+1), A002624, A060099-A060101 for m=0..5.
%C A060098 The bisections of the column sequences give triangles A060102 and A060556.
%C A060098 Riordan array (1/(1-x), x/((1-x)*(1-x^2))). - _Paul Barry_, Mar 28 2011
%H A060098 Vincenzo Librandi, <a href="/A060098/b060098.txt">Rows n = 0..100, flattened</a>
%H A060098 Jia Huang, <a href="https://cs.uwaterloo.ca/journals/JIS/VOL26/Huang/huang8.html">Partially Palindromic Compositions</a>, J. Int. Seq. (2023) Vol. 26, Art. 23.4.1. See p. 4.
%F A060098 G.f. for column m >= 0: ((x/((1-x^2)*(1-x)))^m)/(1-x) = x^m/((1+x)^m*(1-x)^(2*m+1)).
%F A060098 Number triangle T(n,k) = Sum_{i=0..floor(n/2)} C(n-2*i,n-2*i-k)*C(k+i-1,i). - _Paul Barry_, Mar 28 2011
%F A060098 From _Philippe Deléham_, Apr 20 2023: (Start)
%F A060098 T(n, k) = 0 if k < 0 or if k > n; T(n, k) = 1 if k = 0 or k = n; otherwise:
%F A060098 T(n, k) = T(n-1, k) + T(n-1, k-1) + T(n-2, k) - T(n-3, k).
%F A060098 T(n, k) = A188316(n, k) + A188316(n-1, k). (End)
%e A060098 p(3,x) = 1 + 4*x + 3*x^2 + x^3.
%e A060098 Triangle begins:
%e A060098   1;
%e A060098   1,  1;
%e A060098   1,  2,  1;
%e A060098   1,  4,  3,  1;
%e A060098   1,  6,  8,  4,  1;
%e A060098   1,  9, 16, 13,  5,  1;
%e A060098   1, 12, 30, 32, 19,  6,  1;
%e A060098   1, 16, 50, 71, 55, 26,  7,  1;
%e A060098   ...
%p A060098 A060098 := proc(n,k) add( binomial(n-2*i,n-2*i-k)*binomial(k+i-1,i), i=0..floor(n/2)) ; end proc:
%p A060098 seq(seq(A060098(n,k), k=0..n), n=0..12); # _R. J. Mathar_, Mar 29 2011
%p A060098 # Recurrence after _Philippe Deléham_:
%p A060098 T := proc(n, k) option remember;
%p A060098 if k < 0 or k > n then 0 elif k = 0 or n = k then 1 else
%p A060098 T(n-1, k) + T(n-1, k-1) + T(n-2, k) - T(n-3, k) fi end:
%p A060098 for n from 0 to 9 do seq(T(n, k), k = 0..n) od;  # _Peter Luschny_, May 07 2023
%t A060098 t[n_, k_] := Sum[ Binomial[n-2*j, n-2*j-k]*Binomial[k+j-1, j], {j, 0, n/2}]; Table[t[n, k], {n, 0, 10}, {k, 0, n}] // Flatten (* _Jean-François Alcover_, Jun 21 2013 *)
%Y A060098 Cf. A052534, A000012, A002620(n+1), A002624, A060099, A060100, A060101.
%Y A060098 Cf. A060102, A060556, A188316.
%K A060098 nonn,easy,tabl
%O A060098 0,5
%A A060098 _Wolfdieter Lang_, Apr 06 2001