This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A060102 #6 Dec 11 2019 23:40:30 %S A060102 1,1,1,1,4,1,1,9,8,1,1,16,30,13,1,1,25,80,71,19,1,1,36,175,259,140,26, %T A060102 1,1,49,336,742,660,246,34,1,1,64,588,1806,2370,1442,399,43,1,1,81, %U A060102 960,3906,7062,6292,2828,610,53 %N A060102 Bisection of triangle A060098: even-indexed members of column sequences of A060098 (not counting leading zeros). %C A060102 Row sums give A052975. Column sequences without leading zeros give for m=0..5: A000012 (powers of 1), A000290 (squares), A002417(n+1), A060103-5. %C A060102 Companion triangle (odd-indexed members) A060556. %F A060102 a(n, m) = A060098(2*n-m, m). %F A060102 a(n, m) = Sum_{j=0..floor((m+1)/2)} binomial((n-m)-j+2*m, 2*m)*binomial(m+1, 2*j), n >= m >= 0, otherwise zero. %F A060102 G.f. for column m: (x^m)*Pe(m+1, x)/(1-x)^(2*m+1), with Pe(n, x) = Sum_{j=0..floor(n/2)} binomial(n, 2*j)*x^j (even members of row n of Pascal triangle A007318). %e A060102 {1}; {1,1}; {1,4,1}; {1,9,8,1}; ... Pe(3,x) = 1 + 3*x. %K A060102 nonn,easy,tabl %O A060102 0,5 %A A060102 _Wolfdieter Lang_, Apr 06 2001