cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A060119 Positions of permutations of A060117 in reversed colexicographic ordering A055089.

This page as a plain text file.
%I A060119 #25 Sep 09 2017 19:44:44
%S A060119 0,1,2,3,5,4,6,7,8,9,11,10,14,15,12,13,16,17,21,20,23,22,19,18,24,25,
%T A060119 26,27,29,28,30,31,32,33,35,34,38,39,36,37,40,41,45,44,47,46,43,42,54,
%U A060119 55,56,57,59,58,48,49,50,51,53,52,60,61,62,63,65,64,67,66,70,71,69,68
%N A060119 Positions of permutations of A060117 in reversed colexicographic ordering A055089.
%C A060119 Together with the inverse A060126 this can be used to conjugate between "multiplication tables" of A261096 & A261216 (and for example, their main diagonals A261099 & A261219, or between involutions A056019 & A060125, see the Formula section) that have been computed for these two common alternative orderings of permutations. - _Antti Karttunen_, Sep 28 2016
%H A060119 Antti Karttunen, <a href="/A060119/b060119.txt">Table of n, a(n) for n = 0..5040</a>
%H A060119 <a href="/index/Fa#facbase">Index entries for sequences related to factorial base representation</a>
%H A060119 <a href="/index/Per#IntegerPermutation">Index entries for sequences that are permutations of the natural numbers</a>
%F A060119 As a composition of other permutations:
%F A060119 a(n) = A056019(A060120(n)).
%F A060119 Other identities, for all n >= 0:
%F A060119 a(A060125(A060126(n))) = A056019(n).
%p A060119 # The procedure PermUnrank3R is given in A060117, and PermRevLexRank in A056019:
%p A060119 A060119(n) = PermRevLexRank(PermUnrank3R(n));
%Y A060119 Inverse: A060126.
%Y A060119 Cf. A060132 (fixed points).
%Y A060119 Cf. A055089, A060117.
%Y A060119 Cf. also A056019, A060120, A060125, A261096, A261099, A261216, A261219.
%K A060119 nonn,base
%O A060119 0,3
%A A060119 _Antti Karttunen_, Mar 02 2001
%E A060119 Edited by _Antti Karttunen_, Sep 27 2016