cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A060155 Table T(n,k) by antidiagonals of floor(n^k/k) [n,k >= 1].

Original entry on oeis.org

1, 0, 2, 0, 2, 3, 0, 2, 4, 4, 0, 4, 9, 8, 5, 0, 6, 20, 21, 12, 6, 0, 10, 48, 64, 41, 18, 7, 0, 18, 121, 204, 156, 72, 24, 8, 0, 32, 312, 682, 625, 324, 114, 32, 9, 0, 56, 820, 2340, 2604, 1555, 600, 170, 40, 10, 0, 102, 2187, 8192, 11160, 7776, 3361, 1024, 243, 50, 11
Offset: 1

Views

Author

Henry Bottomley, Mar 12 2001

Keywords

Examples

			T(5,3)=[5^3/3]=[125/3]=41.
Rows start:
  1,  0,  0,   0,   0, ...
  2,  2,  2,   4,   6, ...
  3,  4,  9,  20,  48, ...
  4,  8, 21,  64, 204, ...
  5, 12, 41, 156, 625, ...
		

Crossrefs

Columns include A000027, A007590.
Diagonals include A000169.

Formula

T(n, k) = (A051129(n, k)-A060154(n, k))/k.

A062172 Table T(n,k) by antidiagonals of n^(k-1) mod k [n,k > 0].

Original entry on oeis.org

0, 1, 0, 1, 0, 0, 1, 1, 1, 0, 1, 0, 0, 0, 0, 1, 1, 3, 1, 1, 0, 1, 2, 1, 0, 1, 0, 0, 1, 1, 3, 1, 1, 0, 1, 0, 1, 0, 1, 4, 0, 0, 1, 0, 0, 1, 4, 3, 1, 5, 1, 3, 1, 1, 0, 1, 2, 0, 0, 1, 0, 1, 0, 0, 0, 0, 1, 1, 3, 7, 5, 1, 1, 1, 1, 1, 1, 0, 1, 8, 1, 4, 7, 0, 0, 2, 1, 0, 1, 0, 0, 1, 1, 3, 1, 5, 0, 7, 1, 3, 0, 3, 0, 1, 0
Offset: 1

Views

Author

Henry Bottomley, Jun 12 2001

Keywords

Examples

			T(5,3)=5^(3-1) mod 3=25 mod 3=1. Rows start (0,1,1,1,1,...), (0,0,1,0,1,...), (0,1,0,3,1...), (0,0,1,0,1,...), (0,1,1,1,0,...), ...
		

Crossrefs

Cf. A002997, A060154. Rows include A057427, A062173, A062174, A062175, A062176. Columns include A000004, A000035, A011655, A010684 with interleaved 0's, A011558, A010875. Diagonals include all the rows again and A000004 and A009001 unsigned.

A114448 Array a(n,k) = n^k (mod k) read by antidiagonals (k>=1, n>=1).

Original entry on oeis.org

0, 0, 1, 0, 0, 1, 0, 1, 2, 1, 0, 0, 0, 0, 1, 0, 1, 1, 1, 2, 1, 0, 0, 2, 0, 3, 4, 1, 0, 1, 0, 1, 4, 3, 2, 1, 0, 0, 1, 0, 0, 4, 3, 0, 1, 0, 1, 2, 1, 1, 1, 4, 1, 8, 1, 0, 0, 0, 0, 2, 0, 5, 0, 0, 4, 1, 0, 1, 1, 1, 3, 1, 6, 1, 1, 9, 2, 1, 0, 0, 2, 0, 4, 4, 0, 0, 8, 6, 3, 4, 1, 0, 1, 0, 1, 0, 3, 1, 1, 0, 5, 4, 9, 2, 1
Offset: 1

Views

Author

Leroy Quet, Feb 14 2006

Keywords

Comments

Alternate description: triangular array a(n, k) = n^k (mod k) read by rows (n > 1, 0 < k < n). This is equivalent because a(n, k) = a(n-k, k). - David Wasserman, Jan 25 2007

Examples

			2^6 = 64 and 64 (mod 6) is 4. So a(2,6) = 4.
		

Crossrefs

Programs

  • Mathematica
    a[n_, k_] := Mod[n^k, k]; Table[a[n - k + 1, k], {n, 1, 14}, {k, 1, n}] // Flatten (* Jean-François Alcover, Dec 12 2012 *)

Extensions

More terms from David Wasserman, Jan 25 2007
Showing 1-3 of 3 results.