This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A060175 #44 Jan 16 2025 11:30:56 %S A060175 0,0,1,0,0,0,0,0,1,2,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,1,1,0,0,0,0,0,0,0, %T A060175 0,3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,2,1,0,0,0,0,0,0,0,0,0,0,0,0,0, %U A060175 0,0,0,0,0,0,0,1,0,2,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0 %N A060175 Square array A(n,k) = exponent of the largest power of k-th prime which divides n, read by falling antidiagonals. %H A060175 Antti Karttunen, <a href="/A060175/b060175.txt">Table of n, a(n) for n = 1..22155; the first 210 antidiagonals</a> %F A060175 A(n, k) = log(A060176(n, k))/log(A000040(k)) = k-th digit from right of A054841(n). %e A060175 a(12,1) = 2 since 4 = 2^2 = p_1^2 divides 12 but 8 = 2^3 does not. %e A060175 a(12,2) = 1 since 3 = p_2 divides 12 but 9 = 3^2 does not. %e A060175 See also examples in A249344, which is transpose of this array. %e A060175 The top-left corner of the array: %e A060175 n\k | 1 2 3 4 5 6 7 8 %e A060175 ----+------------------------ %e A060175 1 | 0, 0, 0, 0, 0, 0, 0, 0, %e A060175 2 | 1, 0, 0, 0, 0, 0, 0, 0, %e A060175 3 | 0, 1, 0, 0, 0, 0, 0, 0, %e A060175 4 | 2, 0, 0, 0, 0, 0, 0, 0, %e A060175 5 | 0, 0, 1, 0, 0, 0, 0, 0, %e A060175 6 | 1, 1, 0, 0, 0, 0, 0, 0, %e A060175 7 | 0, 0, 0, 1, 0, 0, 0, 0, %e A060175 8 | 3, 0, 0, 0, 0, 0, 0, 0, %e A060175 9 | 0, 2, 0, 0, 0, 0, 0, 0, %e A060175 10 | 1, 0, 1, 0, 0, 0, 0, 0, %e A060175 11 | 0, 0, 0, 0, 1, 0, 0, 0, %e A060175 12 | 2, 1, 0, 0, 0, 0, 0, 0, %e A060175 ... %t A060175 T[n_, k_] := IntegerExponent[n, Prime[k]]; %t A060175 Table[T[n-k+1, k], {n, 1, 15}, {k, n, 1, -1}] // Flatten (* _Jean-François Alcover_, Nov 18 2019 *) %o A060175 (Scheme) %o A060175 (define (A060175 n) (A249344bi (A004736 n) (A002260 n))) %o A060175 (define (A249344bi row col) (let ((p (A000040 row))) (let loop ((n col) (i 0)) (cond ((not (zero? (modulo n p))) i) (else (loop (/ n p) (+ i 1))))))) %o A060175 ;; _Antti Karttunen_, Oct 28 2014 %o A060175 (Python) %o A060175 from sympy import prime %o A060175 def a(n, k): %o A060175 p=prime(n) %o A060175 i=z=0 %o A060175 while p**i<=k: %o A060175 if k%(p**i)==0: z=i %o A060175 i+=1 %o A060175 return z %o A060175 for n in range(1, 10): print([a(n - k + 1, k) for k in range(1, n + 1)]) # _Indranil Ghosh_, Jun 24 2017 %o A060175 (PARI) a(n, k) = valuation(n, prime(k)); \\ _Michel Marcus_, Jun 24 2017 %Y A060175 Transpose: A249344. %Y A060175 Column 1: A007814. %Y A060175 Column 2: A007949. %Y A060175 Column 3: A112765. %Y A060175 Column 4: A214411. %Y A060175 Row sums: A001222. %Y A060175 Cf. also A002260, A004736, A054841, A060176, A085604, A090622, A115627, A249421, A249422. %K A060175 easy,nonn,tabl %O A060175 1,10 %A A060175 _Henry Bottomley_, Mar 14 2001 %E A060175 Erroneous example corrected and more terms computed by _Antti Karttunen_, Oct 28 2014 %E A060175 Name clarified by _Antti Karttunen_, Jan 16 2025