cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A060177 Triangle of generalized sum of divisors function, read by rows.

This page as a plain text file.
%I A060177 #36 Sep 15 2023 10:21:02
%S A060177 1,2,1,2,2,3,5,2,1,6,4,2,11,2,5,13,4,10,17,3,1,15,22,4,2,25,27,2,5,37,
%T A060177 29,6,10,52,37,2,20,67,44,4,1,30,97,44,4,2,52,117,55,5,5,77,154,59,2,
%U A060177 10,117,184,68,6,20,162,235,71,2,36,227,277,81,6,1,58,309,338
%N A060177 Triangle of generalized sum of divisors function, read by rows.
%C A060177 Lengths of rows are 1 1 2 2 2 3 3 3 3 4 4 4 4 4 ... (A003056).
%H A060177 Alois P. Heinz, <a href="/A060177/b060177.txt">Rows n = 1..500, flattened</a>
%H A060177 P. A. MacMahon, <a href="https://doi.org/10.1112/plms/s2-19.1.75">Divisors of numbers and their continuations in the theory of partitions</a>, Proc. London Math. Soc., (2) 19 (1919), 75-113; Coll. Papers II, pp. 303-341.
%F A060177 T(n,k) = Partitions of n using only k types of piles. Also, Sum_{k=1..A003056(n)} T(n,k)*k = A000070(n). Also, Sum_{k=1..A003056(n)} T(n,k)*(k-1) = A058884(n). - _Naohiro Nomoto_, Jan 24 2002
%F A060177 G.f. for k-th diagonal (the k-th row of the sideways triangle shown in the example): Sum_{ m_1 < m_2 < ... < m_k} q^(m_1+m_2+...+m_k)/((1-q^m_1)*(1-q^m_2)*...*(1-q^m_k)) = Sum_n T(n, k)*q^n.
%e A060177 Triangle turned on its side begins:
%e A060177   1  2  2  3  2  4  2  4  3  4  2  6 ...
%e A060177         1  2  5  6 11 13 17 22 27 29 ...
%e A060177                  1  2  5 10 15 25 37 ...
%e A060177                              1  2  5 ...
%p A060177 b:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<1, 0,
%p A060177       expand(b(n, i-1) +x*add(b(n-i*j, i-1), j=1..n/i))))
%p A060177     end:
%p A060177 T:= n->(p->seq(coeff(p, x, degree(p)-k), k=0..degree(p)-1))(b(n$2)):
%p A060177 seq(T(n), n=1..25);  # _Alois P. Heinz_, Jan 29 2014
%t A060177 Reverse /@ Table[Length /@ Split[ Sort[Map[Length, Split /@ IntegerPartitions[n], {1}]]], {n, 24}] (* _Wouter Meeussen_, Apr 21 2012, updated by _Jean-François Alcover_, Jan 29 2014 *)
%o A060177 (Python)
%o A060177 from math import isqrt
%o A060177 from itertools import count, islice
%o A060177 from sympy.utilities.iterables import partitions
%o A060177 def A060177_gen(): # generator of terms
%o A060177     return (sum(1 for p in partitions(n) if len(p)==k) for n in count(1) for k in range(isqrt((n<<3)+1)-1>>1,0,-1))
%o A060177 A060177_list = list(islice(A060177_gen(),30)) # _Chai Wah Wu_, Sep 15 2023
%Y A060177 Diagonals give A000005, A002133, A002134, A365630, A365631. Cf. A060043, A060044.
%Y A060177 Cf. A116608 (reflected rows). - _Alois P. Heinz_, Jan 29 2014
%K A060177 nonn,tabf,easy,nice,look
%O A060177 1,2
%A A060177 _N. J. A. Sloane_, Mar 20 2001
%E A060177 More terms from _Naohiro Nomoto_, Jan 24 2002