A060209 Dunckley sequence: number of bases in which the n-th composite number is a Smith number.
0, 0, 0, 0, 1, 0, 1, 2, 1, 1, 1, 1, 1, 1, 2, 1, 3, 1, 2, 2, 1, 3, 1, 2, 1, 1, 1, 4, 1, 2, 3, 1, 2, 2, 2, 3, 1, 4, 1, 3, 3, 5, 1, 4, 3, 1, 3, 1, 1, 5, 6, 2, 2, 1, 1, 7, 1, 2, 2, 4, 6, 1, 2, 1, 2, 1, 2, 1, 4, 1, 1, 2, 2, 2, 5, 3, 7, 3, 2, 4, 1, 1, 6, 3, 1, 4, 2, 3, 2, 3, 1, 1, 1, 5, 2, 4, 1, 5, 5, 1, 3, 2, 1, 5, 3, 2
Offset: 1
Examples
The first 4 composite numbers, 4, 6, 8, and 9, are not Smith numbers in any base, so a(n) = 0 for n = 1 to 4. A002808(5) = 10 is a Smith number in one base, 4, so a(5) = 1.
References
- A. Vella and D. Vella, On Smith and Dunckley Numbers, Mathematics Today (Bull. Inst. Math. Appl), Vol. 37, No. 2 (2001), 54-56.
- A. Vella and D. Vella, More Properties of Dunckley Numbers (in preparation).
Links
- Amiram Eldar, Table of n, a(n) for n = 1..10000
Programs
-
Mathematica
digSum[n_, b_] := Plus @@ IntegerDigits[n, b]; smithCount[n_] := If[! CompositeQ[n], 0, Module[{c = 0, f = FactorInteger[n]}, p = f[[;; , 1]]; e = f[[;; , 2]]; Do[If[Total[e*(digSum[#, b] & /@ p)] == digSum[n, b], c++], {b, 2, n}]; c]]; smithCount /@ Select[Range[100], CompositeQ] (* Amiram Eldar, Aug 21 2020 *)
Extensions
a(1) added and offset corrected by Amiram Eldar, Aug 21 2020