This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A060212 #34 Dec 19 2023 15:59:03 %S A060212 2,3,5,7,17,23,47,103,107,137,283,313,347,373,397,443,467,577,593,653, %T A060212 773,787,907,1033,1117,1423,1433,1613,1823,2027,2063,2137,2153,2203, %U A060212 2287,2293,2333,2347,2677,2903,3257,3307,3407,3413,3593,3623,3673,3923 %N A060212 Primes q such that 6*q-1 and 6*q+1 are twin primes. Proper subset of A002822. %C A060212 Primes in A182521. Also all primes p for which A182481(p)=1. - _Vladimir Shevelev_, May 03 2012 %C A060212 Conjecture: a(n) ~ n*log(n)*log(n*log(n))*log(log(n)). - _Carl R. White_, Nov 16 2023 %H A060212 David Radcliffe, <a href="/A060212/b060212.txt">Table of n, a(n) for n = 1..10000</a> %t A060212 lst={}; Do[p=Prime[n]; If[PrimeQ[6*p-1] && PrimeQ[6*p+1], AppendTo[lst,p]], {n,100}]; lst (* _Vladimir Joseph Stephan Orlovsky_, Aug 16 2009 *) %o A060212 (PARI) forprime(p=2, 9999, if(isprime(6*p+1) & isprime(6*p-1), print(p))) \\ _David Radcliffe_, Apr 02 2016 %o A060212 (Python) from sympy import *; print([p for p in primerange(2,9999) if isprime(6*p-1) and isprime(6*p+1)]) # _David Radcliffe_, Apr 02 2016 %Y A060212 Cf. A001359, A002822, A014574, A027856, A058383, A059960, A182481, A182521, A294731. %K A060212 nonn %O A060212 1,1 %A A060212 _Labos Elemer_, Mar 20 2001