cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A060279 Number of labeled rooted trees with all 2n nodes of odd degree.

This page as a plain text file.
%I A060279 #28 Nov 06 2024 04:14:36
%S A060279 2,16,576,47104,6860800,1562148864,512260833280,228646878969856,
%T A060279 133296779352342528,98349146136012390400,89583293999931442855936,
%U A060279 98732413018143104723582976,129497500112719525122855141376,199333356644821012200519079297024
%N A060279 Number of labeled rooted trees with all 2n nodes of odd degree.
%C A060279 There are no such trees with an odd number of nodes.
%D A060279 I. P. Goulden and D. M. Jackson, Combinatorial Enumeration, John Wiley and Sons, N.Y., 1983.
%H A060279 G. C. Greubel, <a href="/A060279/b060279.txt">Table of n, a(n) for n = 1..210</a>
%F A060279 a(n) = (n/2^n)*Sum_{k=0..n} binomial(n, k)*(n-2*k)^(n-2).
%F A060279 a(n) = 2*n * A007106(n).
%F A060279 a(n) ~ sqrt(1+s^2) * s^(2*n-1) * 2^(2*n) * n^(2*n-1) / exp(2*n), where s = 1.5088795615383199289... is the root of the equation sqrt(1+s^2) = s*log(s+sqrt(1+s^2)). - _Vaclav Kotesovec_, Jan 23 2014
%p A060279 a:= j-> (n-> (n/2^n)*add(binomial(n, k)*(n-2*k)^(n-2), k=0..n))(2*j):
%p A060279 seq(a(n), n=1..15);  # _Alois P. Heinz_, Sep 27 2020
%t A060279 Flatten[{2,Table[n/2^n*Sum[Binomial[n,k]*(n-2*k)^(n-2),{k,0,n}],{n,4,30,2}]}] (* _Vaclav Kotesovec_, Jan 23 2014 *)
%t A060279 A060279[n_]:= n*Sum[Binomial[2*n,k]*(n-k)^(2*n-2), {k,0,n-1}] +Boole[n==1];
%t A060279 Table[A060279[n], {n,40}] (* _G. C. Greubel_, Nov 05 2024 *)
%o A060279 (PARI) a(n) = n/2^n*sum(k=0, n, binomial(n, k)*(n-2*k)^(n-2)) \\ _Michel Marcus_, Jun 17 2013
%o A060279 (Magma)
%o A060279 A060279:= func< n | n eq 1 select 2 else n*(&+[Binomial(2*n,k)*(n-k)^(2*n-2) : k in [0..n-1]]) >;
%o A060279 [A060279(n): n in [1..30]]; // _G. C. Greubel_, Nov 05 2024
%o A060279 (SageMath)
%o A060279 def A060279(n): return n*sum( binomial(2*n,k)*(n-k)^(2*n-2) for k in range(n)) + int(n==1)
%o A060279 [A060279(n) for n in range(1,41)] # _G. C. Greubel_, Nov 05 2024
%Y A060279 Cf. A007106.
%K A060279 easy,nonn
%O A060279 1,1
%A A060279 _Vladeta Jovovic_, Mar 28 2001