cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A060281 Triangle T(n,k) read by rows giving number of labeled mappings (or functional digraphs) from n points to themselves (endofunctions) with exactly k cycles, k=1..n.

This page as a plain text file.
%I A060281 #59 Nov 06 2024 04:30:48
%S A060281 1,3,1,17,9,1,142,95,18,1,1569,1220,305,30,1,21576,18694,5595,745,45,
%T A060281 1,355081,334369,113974,18515,1540,63,1,6805296,6852460,2581964,
%U A060281 484729,49840,2842,84,1,148869153,158479488,64727522,13591116,1632099,116172,4830,108,1
%N A060281 Triangle T(n,k) read by rows giving number of labeled mappings (or functional digraphs) from n points to themselves (endofunctions) with exactly k cycles, k=1..n.
%C A060281 Also called sagittal graphs.
%C A060281 T(n,k)=1 iff n=k (counts the identity mapping of [n]). - _Len Smiley_, Apr 03 2006
%C A060281 Also the coefficients of the tree polynomials t_{n}(y) defined by (1-T(z))^(-y) = Sum_{n>=0} t_{n}(y) (z^n/n!) where T(z) is Cayley's tree function T(z) = Sum_{n>=1} n^(n-1) (z^n/n!) giving the number of labeled trees A000169. - _Peter Luschny_, Mar 03 2009
%D A060281 I. P. Goulden and D. M. Jackson, Combinatorial Enumeration, Wiley, N.Y., 1983.
%D A060281 W. Szpankowski. Average case analysis of algorithms on sequences. John Wiley & Sons, 2001. - _Peter Luschny_, Mar 03 2009
%H A060281 Alois P. Heinz, <a href="/A060281/b060281.txt">Rows n = 1..141, flattened</a>
%H A060281 Julia Handl and Joshua Knowles, <a href="http://dx.doi.org/10.1007/11844297_85">An Investigation of Representations and Operators for Evolutionary Data Clustering with a Variable Number of Clusters</a>, in Parallel Problem Solving from Nature-PPSN IX, Lecture Notes in Computer Science, Volume 4193/2006, Springer-Verlag. [From _N. J. A. Sloane_, Jul 09 2009]
%H A060281 D. E. Knuth, <a href="http://arxiv.org/abs/math/9207221">Convolution polynomials</a>, The Mathematica J., 2 (1992), 67-78.
%H A060281 D. E. Knuth and B. Pittel, <a href="http://www.jstor.org/stable/2046947">A recurrence related to trees</a>, Proceedings of the American Mathematical Society, 105(2):335-349, 1989. [From _Peter Luschny_, Mar 03 2009]
%H A060281 J. Riordan, <a href="http://dx.doi.org/10.1214/aoms/1177704722">Enumeration of Linear Graphs for Mappings of Finite Sets</a>, Ann. Math. Stat., 33, No. 1, Mar. 1962, pp. 178-185.
%H A060281 David M. Smith and Geoffrey Smith, <a href="https://doi.org/10.1109/CSF.2017.18">Tight Bounds on Information Leakage from Repeated Independent Runs</a>, 2017 IEEE 30th Computer Security Foundations Symposium (CSF).
%F A060281 E.g.f.: 1/(1 + LambertW(-x))^y.
%F A060281 T(n,k) = Sum_{j=0..n-1} C(n-1,j)*n^(n-1-j)*(-1)^(k+j+1)*A008275(j+1,k) = Sum_{j=0..n-1} binomial(n-1,j)*n^(n-1-j)*s(j+1,k). [Riordan] (Note: s(m,p) denotes signless Stirling cycle number (first kind), A008275 is the signed triangle.) - _Len Smiley_, Apr 03 2006
%F A060281 T(2*n, n) = A273442(n), n >= 1. -  _Alois P. Heinz_, May 22 2016
%F A060281 From _Alois P. Heinz_, Dec 17 2021: (Start)
%F A060281 Sum_{k=1..n} k * T(n,k) = A190314(n).
%F A060281 Sum_{k=1..n} (-1)^(k+1) * T(n,k) = A000169(n) for n>=1. (End)
%e A060281 Triangle T(n,k) begins:
%e A060281         1;
%e A060281         3,       1;
%e A060281        17,       9,       1;
%e A060281       142,      95,      18,      1;
%e A060281      1569,    1220,     305,     30,     1;
%e A060281     21576,   18694,    5595,    745,    45,    1;
%e A060281    355081,  334369,  113974,  18515,  1540,   63,  1;
%e A060281   6805296, 6852460, 2581964, 484729, 49840, 2842, 84, 1;
%e A060281   ...
%e A060281 T(3,2)=9: (1,2,3)--> [(2,1,3),(3,2,1),(1,3,2),(1,1,3),(1,2,1), (1,2,2),(2,2,3),(3,2,3),(1,3,3)].
%e A060281 From _Peter Luschny_, Mar 03 2009: (Start)
%e A060281   Tree polynomials (with offset 0):
%e A060281   t_0(y) = 1;
%e A060281   t_1(y) = y;
%e A060281   t_2(y) = 3*y + y^2;
%e A060281   t_3(y) = 17*y + 9*y^2 + y^3; (End)
%p A060281 with(combinat):T:=array(1..8,1..8):for m from 1 to 8 do for p from 1 to m do T[m,p]:=sum(binomial(m-1,k)*m^(m-1-k)*(-1)^(p+k+1)*stirling1(k+1,p),k=0..m-1); print(T[m,p]) od od; # _Len Smiley_, Apr 03 2006
%p A060281 From _Peter Luschny_, Mar 03 2009: (Start)
%p A060281 T := z -> sum(n^(n-1)*z^n/n!,n=1..16):
%p A060281 p := convert(simplify(series((1-T(z))^(-y),z,12)),'polynom'):
%p A060281 seq(print(coeff(p,z,i)*i!),i=0..8); (End)
%t A060281 t=Sum[n^(n-1) x^n/n!,{n,1,10}];
%t A060281 Transpose[Table[Rest[Range[0, 10]! CoefficientList[Series[Log[1/(1 - t)]^n/n!, {x, 0, 10}], x]], {n,1,10}]]//Grid (* _Geoffrey Critzer_, Mar 13 2011*)
%t A060281 Table[k! SeriesCoefficient[1/(1 + ProductLog[-t])^x, {t, 0, k}, {x, 0, j}], {k, 10}, {j, k}] (* _Jan Mangaldan_, Mar 02 2013 *)
%o A060281 (Magma)
%o A060281 A060281:= func< n,k | (&+[Binomial(n-1,j)*n^(n-1-j)*(-1)^(k+j+1)*StirlingFirst(j+1,k): j in [0..n-1]]) >;
%o A060281 [A060281(n,k): k in [1..n], n in [1..12]]; // _G. C. Greubel_, Nov 06 2024
%o A060281 (SageMath)
%o A060281 @CachedFunction
%o A060281 def A060281(n,k): return sum(binomial(n-1,j)*n^(n-1-j)*stirling_number1(j+1,k) for j in range(n))
%o A060281 flatten([[A060281(n,k) for k in range(1,n+1)] for n in range(1,13)]) # _G. C. Greubel_, Nov 06 2024
%Y A060281 Columns k=1-10 give: A001865, A065456, A273434, A273435, A273436, A273437, A273438, A273439, A273440, A273441.
%Y A060281 Row sums: A000312.
%Y A060281 Main diagonal and first lower diagonal give: A000012, A045943.
%Y A060281 Cf. A000169, A190314, A242027, A209324, A273442, A347999.
%K A060281 easy,nonn,tabl
%O A060281 1,2
%A A060281 _Vladeta Jovovic_, Apr 09 2001