A060290 Primes which are sums of twin Harshad numbers (includes overlaps).
3, 5, 7, 11, 13, 17, 19, 41, 223, 401, 419, 449, 881, 1021, 1259, 1289, 1471, 1601, 1607, 1871, 1999, 2029, 2281, 2549, 2609, 2833, 3041, 3359, 3457, 4001, 4049, 4481, 4801, 4931, 5641, 6329, 7499, 7561, 8081, 8849, 8929, 9613, 9619, 10111, 10321
Offset: 1
Examples
a(5)=17, a prime because the first Harshad number is 8 and the second is 9 and 8+9=17. In this sequence overlapping Harshad's are permitted: 1+2=3 and 2+3=5.
Links
- Amiram Eldar, Table of n, a(n) for n = 1..10000
Programs
-
Maple
isA005349 := proc(n) if n mod digsum(n) = 0 then true; else false; end if; end proc: isA060290 := proc(n) local h1 ; if isprime(n) then h1 := (n-1)/2 ; if isA005349(h1) and isA005349(h1+1) then true; else false; end if; else false; end if; end proc: for n from 3 to 20000 do if isA060290(n) then printf("%d,",n) ; end if; end do: # R. J. Mathar, Dec 20 2013
-
Mathematica
harshadQ[n_] := Divisible[n, Plus @@ IntegerDigits[n]]; s = {}; q1 = True; Do[q2 = harshadQ[n]; If[q1 && q2 && PrimeQ[2*n - 1], AppendTo[s, 2*n - 1]]; q1 = q2, {n, 2, 5000}]; s (* Amiram Eldar, Jan 19 2021 *)
-
UBASIC
20 A=0; 30 inc A; 40 if Ct=2 then Z=(A-1)+(A-2): if Z=prmdiv(Z) then print A-2; "+"; A-1; "="; Z; "/"; :inc Pt; 50 if Ct=2 then Ct=1:A=A-2; 60 X=1; 70 B=str(A); 80 L=len(B); 90 inc X; 100 S=mid(B,X,1); 110 V=val(S):W=W+V; 120 if X
Dt+1 then Ct=0:Dt=0; 150 Dt=Ct:W=0; 160 if A<=10 then 30; 170 print Pt;
Formula
Extensions
Offset corrected by Amiram Eldar, Jan 19 2021