This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A060298 #67 Oct 16 2023 17:43:55 %S A060298 3,12,34,94,263,768,2333,7167,22291,69751,219081,689736,2174856, %T A060298 6864354,21679391,68497906,216485583,684323923,2163459803,6840258025, %U A060298 21628220224,68388917596,216252901472,683826283482,2162393925204,6837972506895,21623315009817 %N A060298 Number of powers x^y (x,y > 1) with n digits. %C A060298 Conjectures from _Robert G. Wilson v_, Aug 29 2012: (Start) %C A060298 Limit_{n->oo} a(2n)/10^n = 1 - 1/sqrt(10). %C A060298 Limit_{n->oo} a(2n-1)/10^n = 1/sqrt(10) - 1/10. (End) %C A060298 These follow from the Formula. - _Robert Israel_, Apr 29 2020 %C A060298 Limit_{n->oo} a(n)/a(n-1) = sqrt(10). - _Bernard Schott_, Jan 21 2023 %H A060298 Robert Israel, <a href="/A060298/b060298.txt">Table of n, a(n) for n = 1..1000</a> %H A060298 Karl-Heinz Hofmann, <a href="/A060298/a060298.txt">Python program</a> %F A060298 a(n) = Sum_{y=2..floor(n*log_2(10))} (ceiling(10^(n/y)) - ceiling(10^((n-1)/y))) for n >= 2. - _Robert Israel_, Apr 29 2020 %F A060298 a(n) = A089580(n+1) - A089580(n) for n > 1. - _Karl-Heinz Hofmann_, Sep 18 2023 %e A060298 a(1) = 3 because there are 3 powers with 1 digit: 2^2, 2^3 and 3^2. %p A060298 f:= proc(n) local y; %p A060298 add(ceil(10^(n/y))-ceil(10^((n-1)/y)), y=2..floor(n*log[2](10))) %p A060298 end proc: %p A060298 f(1):= 3: %p A060298 map(f, [$1..20]); # _Robert Israel_, Apr 29 2020 %o A060298 (Python) # see link %o A060298 (Python) %o A060298 from sympy import integer_nthroot, integer_log %o A060298 def A060298(n): %o A060298 if n == 1: return 3 %o A060298 c, y, a, b, t = 0, 2, 10**n-1, 10**(n-1)-1, (10**n).bit_length() %o A060298 while y<t: %o A060298 c += (m:=integer_nthroot(a,y)[0])-(k:=integer_nthroot(b,y)[0]) %o A060298 y = (integer_log(b,k)[0] if m==k else y)+1 %o A060298 return c # _Chai Wah Wu_, Oct 16 2023 %Y A060298 Cf. A001597, A089580 (partial sums). %K A060298 nonn,base %O A060298 1,1 %A A060298 _Michel ten Voorde_, Apr 10 2001 %E A060298 a(10)-a(18) from _Donovan Johnson_, Dec 14 2009 %E A060298 a(19)-a(27) from _Donovan Johnson_, Aug 29 2012