This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A060307 #14 Mar 09 2015 11:52:17 %S A060307 1,3,1365,8534295,204893714025,15735481638151275, %T A060307 2760485970394430603325,1006427270776555103089989375, %U A060307 659316841888260316767029819420625,740198799422691022278446846884066321875,1306298536067264588818106780684613899555353125 %N A060307 Number of degree-4n permutations without odd cycles and such that number of cycles of size 2k is even (or zero) for every k. %H A060307 Alois P. Heinz, <a href="/A060307/b060307.txt">Table of n, a(n) for n = 0..100</a> %F A060307 E.g.f.: Product_{k >= 1} cosh x^(2k)/(2k). %p A060307 with(combinat): %p A060307 b:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<1, 0, add( %p A060307 `if`(j=0 or irem(i, 2)=0 and irem(j, 2)=0, multinomial(n, %p A060307 n-i*j, i$j)*(i-1)!^j/j!*b(n-i*j, i-1), 0), j=0..n/i))) %p A060307 end: %p A060307 a:= n-> b(4*n$2): %p A060307 seq(a(n), n=0..15); # _Alois P. Heinz_, Mar 09 2015 %t A060307 nn = 40; Select[Range[0, nn]! CoefficientList[Series[Product[Cosh[x^(2 i)/(2 i)], {i, 1, nn}], {x, 0, nn}], x], # > 0 &] (* _Geoffrey Critzer_, Jan 16 2012 *) %Y A060307 Cf. A003483. %Y A060307 Cf. A013302. %K A060307 easy,nonn %O A060307 0,2 %A A060307 _Vladeta Jovovic_, Mar 28 2001, Aug 10 2007