cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A060309 A001067 appears to count the periodic points for a certain map. If so, then this is the sequence of the numbers of orbits of length n.

This page as a plain text file.
%I A060309 #11 Nov 08 2022 23:33:50
%S A060309 1,0,0,0,0,115,0,452,4874,17461,7062,19696950,50610,242341439,
%T A060309 114877883680,481832564850,8919335150,1461959530725195586,
%U A060309 8116326631140,13054135924822447372,72385602091336704890,115013510658268698717,1127506827209663824722
%N A060309 A001067 appears to count the periodic points for a certain map. If so, then this is the sequence of the numbers of orbits of length n.
%H A060309 Y. Puri and T. Ward, <a href="http://www.cs.uwaterloo.ca/journals/JIS/VOL4/WARD/short.html">Arithmetic and growth of periodic orbits</a>, J. Integer Seqs., Vol. 4 (2001), #01.2.1.
%H A060309 T. Ward, <a href="http://www.mth.uea.ac.uk/~h720/research/files/integersequences.html">Exactly realizable sequences</a>
%F A060309 If b(n) is the n-th term of A001067, then a(n)=(1/n)* |Sum_{d|n}mu(d)b(n/d)|, n<>2.
%e A060309 a(11) = 7062 because the 11th term of A001067 is 77683 and the first term is 1, so there should be (77683-1)/11 = 7062 orbits of length 11.
%Y A060309 Cf. A001067, A060171, A060479.
%K A060309 nonn
%O A060309 1,6
%A A060309 _Thomas Ward_, Apr 10 2001
%E A060309 a(18) corrected and more terms from _Sean A. Irvine_, Nov 08 2022