This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A060327 #6 Nov 12 2022 17:29:16 %S A060327 31,41,67,71,109,113,131,139,199,211,239,251,269,293,311,337,379,409, %T A060327 419,487,491,499,521,571,599,631,701,751,769,773,787,829,881,919,941, %U A060327 953,991,1009,1013,1039,1049,1061,1103,1117,1151,1193,1229,1291,1301 %N A060327 Primes the sum of both two and three consecutive composite numbers. %H A060327 Harvey P. Dale, <a href="/A060327/b060327.txt">Table of n, a(n) for n = 1..1000</a> %e A060327 a(2) = 41 which is equal to 20+21 and 12+14+15. %t A060327 composite[ n_Integer ] := (k = n + PrimePi[ n ] + 1; While[ k - PrimePi[ k ] - 1 != n, k++ ]; k); a = {}; Do[ p = composite[ n ] + composite[ n + 1 ]; If[ PrimeQ[ p ], a = Append[ a, p ] ], {n, 1, 1000} ]; b = {}; Do[ p = composite[ n ] + composite[ n + 1 ] + composite[ n + 2 ]; If[ PrimeQ[ p ], b = Append[ b, p ] ], {n, 1, 1000} ]; Intersection[ a, b ] %t A060327 Module[{cmps=Select[Range[700],CompositeQ],c2,c3},c2=Total/@Partition[cmps,2,1];c3=Total/@Partition[cmps,3,1];Select[Intersection[c2,c3],PrimeQ]] (* _Harvey P. Dale_, Nov 12 2022 *) %K A060327 nonn %O A060327 1,1 %A A060327 _Robert G. Wilson v_, Mar 30 2001