cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A060330 Primes that are the sum of five consecutive composite numbers.

This page as a plain text file.
%I A060330 #25 Jun 16 2025 10:39:17
%S A060330 37,53,67,83,97,157,293,307,353,367,503,547,683,743,757,907,953,967,
%T A060330 983,997,1193,1553,1567,1733,1747,2153,2617,2843,2857,3083,3203,3217,
%U A060330 3307,4057,4133,4283,4297,5107,5153,5167,5303,6143,6397,6607,7253,7417
%N A060330 Primes that are the sum of five consecutive composite numbers.
%C A060330 Conjecture: all these primes are isolated primes (A007510). - _Davide Rotondo_, Dec 31 2024
%C A060330 Stronger conjecture: all p are 7 or 23 mod 30. - _Charles R Greathouse IV_, Jan 21 2025
%C A060330 Above conjectures are true. Proof sketch: n + n+1 + n+2 + n+3 + n+4 = 5n+10, so there must be at least one prime sandwiched between the five composite numbers. If p and p+4 are prime, then p-1 + p+1 + p+2 + p+3 + p+5 = 5p + 10 is composite. If neither p-2 nor p+2 are prime, the sums p-4 + p-3 + p-2 + p-1 + p+1, etc., are 5p-9, 5p-3, 5p+3, and 5p+9 which are even for p > 2 (and p = 2 does not work). So we must have p and p+2 prime, which yield p-3 + p-2 + p-1 + p+1 + p+3 = 5p-2, p-2 + p-1 + p+1  + p+3 + p+4 = 5p+5, and p-1 + p+1 + p+3 + p+4 + p+5 = 5p+12. 5p+5 is composite, but the others can work. Now note that the first form yields only 5p-2 = 23 mod 30 and the second 5p+12 = 7 mod 30. - _Charles R Greathouse IV_, Jan 23 2025
%H A060330 Charles R Greathouse IV, <a href="/A060330/b060330.txt">Table of n, a(n) for n = 1..10000</a>
%F A060330 a(n) >> n log^3 n. - _Charles R Greathouse IV_, Jan 23 2025
%t A060330 composite[ n_Integer ] := (k = n + PrimePi[ n ] + 1; While[ k - PrimePi[ k ] - 1 != n, k++ ]; k); a = {}; Do[ p = composite[ n ] + composite[ n + 1 ] + composite[ n + 2 ] + composite[ n + 3 ] + composite[ n + 4 ]; If[ PrimeQ[ p ], a = Append[ a, p ] ], {n, 1, 1500} ]; a
%o A060330 (PARI) list(lim)=my(v=List(), u=[4, 6, 8, 9, 0], i=5); forcomposite(n=10, lim\1, u[i]=n; if(i++>5, i=1); my(p=vecsum(u)); if(p>lim, break); if(isprime(p), listput(v, p))); Vec(v) \\ _Charles R Greathouse IV_, Dec 27 2024
%o A060330 (PARI) ok(p)=p=p%30; p==11 || p==17 || p==29
%o A060330 list(lim)=my(v=List([37]),p=11); forprime(q=13, (lim+12)\5, if(q-p>2 || !ok(p), p=q; next); if(isprime(5*p-2), listput(v,5*p-2)); if(isprime(5*p+12), listput(v,5*p+12)); p=q); if(v[#v]>lim, listpop(v)); Vec(v) \\ _Charles R Greathouse IV_, Jan 23 2025
%Y A060330 Subsequence of A007510.
%K A060330 nonn
%O A060330 1,1
%A A060330 _Robert G. Wilson v_, Mar 30 2001