cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A060337 Number of labeled acyclic digraphs with n nodes containing exactly n-2 points of in-degree zero.

This page as a plain text file.
%I A060337 #10 Mar 23 2022 14:45:32
%S A060337 15,198,1610,10575,61845,336924,1751076,8801325,43141175,207347778,
%T A060337 980828238,4578689115,21135851625,96628899960,438068838536,
%U A060337 1971349880985,8813183238315,39169902510270,173172640973010
%N A060337 Number of labeled acyclic digraphs with n nodes containing exactly n-2 points of in-degree zero.
%D A060337 F. Harary and E. M. Palmer, Graphical Enumeration, Academic Press, NY, 1973, p. 19, (1.6.4).
%D A060337 R. W. Robinson, Counting labeled acyclic digraphs, pp. 239-273 of F. Harary, editor, New Directions in the Theory of Graphs. Academic Press, NY, 1973.
%H A060337 Andrew Howroyd, <a href="/A060337/b060337.txt">Table of n, a(n) for n = 3..500</a>
%H A060337 <a href="/index/Rec#order_09">Index entries for linear recurrences with constant coefficients</a>, signature (21,-189,955,-2982,5964,-7640,6048,-2688,512).
%F A060337 G.f.: x^3*(15 - 117*x + 287*x^2 - 138*x^3 - 300*x^4 + 280*x^5)/((1 - x)*(1 - 2*x)*(1 - 4*x))^3. - _Andrew Howroyd_, Dec 27 2021
%t A060337 LinearRecurrence[{21,-189,955,-2982,5964,-7640,6048,-2688,512},{15,198,1610,10575,61845,336924,1751076,8801325,43141175},20] (* _Harvey P. Dale_, Mar 23 2022 *)
%o A060337 (PARI) \\ requires A058876.
%o A060337 my(T=A058876(25)); vector(#T-2, n, T[n+2][n]) \\ _Andrew Howroyd_, Dec 27 2021
%Y A060337 Third column of A058876.
%Y A060337 Cf. A003025, A003026.
%K A060337 nonn,easy
%O A060337 3,1
%A A060337 _Vladeta Jovovic_, Apr 10 2001