cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A060339 Primes that are each the sum of two, three, and four consecutive composite numbers.

This page as a plain text file.
%I A060339 #12 Jul 01 2020 20:20:12
%S A060339 311,337,1009,1103,1511,1777,3671,3889,4271,4657,5737,6841,7561,9649,
%T A060339 9769,10223,12239,12889,14759,14831,17401,17569,17783,19009,19031,
%U A060339 20903,21529,22369,22751,23279,24049,24889,25057,26423,28871,30671
%N A060339 Primes that are each the sum of two, three, and four consecutive composite numbers.
%H A060339 Klaus Brockhaus, <a href="/A060339/b060339.txt">Table of n, a(n) for n=1..1000.</a> [From _Klaus Brockhaus_, Jun 17 2009]
%e A060339 A(2)= 377 is equal to 168+169 = 111+112+114 = 82+84+85+86.
%t A060339 composite[ n_Integer ] := (k = n + PrimePi[ n ] + 1; While[ k - PrimePi[ k ] - 1 != n, k++ ]; k); a = b = c = {}; Do[ p = Sum[ composite[ n + m ], {m, 0, 1} ]; If[ PrimeQ[ p ], a = Append[ a, p ] ]; p = Sum[ composite[ n + m ], {m, 0, 2} ]; If[ PrimeQ[ p ], b = Append[ b, p ] ]; p = Sum[ composite[ n + m ], {m, 0, 3} ]; If[ PrimeQ[ p ], c = Append[ c, p ] ], {n, 1, 25000} ]; Intersection[ a, b, c ]
%t A060339 Module[{cmp=Select[Range[20000],CompositeQ],c2,c3,c4},c2=Total/@ Partition[ cmp,2,1];c3=Total/@Partition[cmp,3,1];c4=Total/@ Partition[ cmp,4,1];Select[ Intersection[c2,c3,c4],PrimeQ]] (* Requires Mathematica version 10 or later *) (* _Harvey P. Dale_, Jul 01 2020 *)
%Y A060339 Cf. A151744. [From _Klaus Brockhaus_, Jun 17 2009]
%K A060339 nonn
%O A060339 1,1
%A A060339 _Robert G. Wilson v_, Mar 30 2001
%E A060339 Definition clarified by _Harvey P. Dale_, Jul 01 2020