This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A060371 #42 Nov 08 2024 07:14:44 %S A060371 2,3,25,721,3628801,479001601,20922789888001,6402373705728001, %T A060371 1124000727777607680001,304888344611713860501504000001, %U A060371 265252859812191058636308480000001,371993326789901217467999448150835200000001 %N A060371 a(n) = (prime(n) - 1)! + 1. %C A060371 If the prime p is in A055469, that is if p = 2, 7, 11, 29, ... = A055469(j) which is valid for the first, 4th, 5th, 10th,.... entry here with j = 1, 2, 3, ..., then a(n) = A052295[A067186(j)] + 1. - _R. J. Mathar_, Apr 27 2007 %C A060371 It follows from Wilson's theorem that a(n) is divisible by the n-th prime. - _Alonso del Arte_, Feb 07 2014 %H A060371 Harry J. Smith, <a href="/A060371/b060371.txt">Table of n, a(n) for n = 1..88</a> (adapted by Vincenzo Librandi, Oct 17 2017) %H A060371 Takashi Agoh, Karl Dilcher and Ladislav Skula, <a href="https://doi.org/10.1090/S0025-5718-98-00951-X">Wilson quotients for composite moduli</a>, Math. Comp. 67 (1998), 843-861. MR 98h:11003. %H A060371 C. K. Caldwell, <a href="https://t5k.org/glossary/page.php?sort=WilsonPrime">Wilson Primes</a> %H A060371 R. Crandall, K. Dilcher and C. Pomerance, <a href="http://dx.doi.org/10.1090/S0025-5718-97-00791-6">A search for Wieferich and Wilson primes</a>, Math. Comp., 66 (1997), 433-449. MR 97c:11004. %t A060371 Table[(Prime[n] - 1)! + 1, {n, 12}] (* _Alonso del Arte_, Feb 07 2014 *) %o A060371 (PARI) { n=1; forprime (p=1, 524, write("b060371.txt", n++, " ", (p - 1)! + 1); ) } \\ _Harry J. Smith_, Jul 04 2009 %o A060371 (Magma) [Factorial(NthPrime(n)-1)+1: n in [1..15]]; // _Vincenzo Librandi_, Oct 17 2017 %Y A060371 Cf. A052295, A055469, A067186. %Y A060371 Subsequence of A038507. - _Michel Marcus_, Oct 17 2017 %K A060371 nonn %O A060371 1,1 %A A060371 _Jason Earls_, Apr 01 2001 %E A060371 Corrected offset by _Alonso del Arte_, Feb 07 2014