cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A060396 Values of k associated with A060395.

Original entry on oeis.org

1, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0, 0, 2, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0, 0, 2, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 2, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0, 0, 2, 0, 1, 0, 0, 0, 0, 0, 1
Offset: 0

Views

Author

N. J. A. Sloane, Apr 04 2001

Keywords

Comments

a(2n) = 0 for n >= 1. a(3n) = 0 for n >= 1. a(6n+1) = 1 for n >= 0. - Nathaniel Johnston, Apr 30 2011

Programs

  • Mathematica
    a[n_] := Switch[n, 0, 1, 1, 1, , Module[{f, kmax0 = 2}, f[kmax] := f[kmax] = MinimalBy[Table[{k, FactorInteger[k^2 + k + n][[1, 1]]}, {k, 0, kmax}], Last, 1]; f[kmax = kmax0]; f[kmax = 2 kmax]; While[f[kmax] != f[kmax/2], kmax = 2 kmax]; f[kmax][[1, 1]]]];
    Table[a[n], {n, 0, 101}] (* Jean-François Alcover, Aug 15 2022 *)

Extensions

Name corrected and a(15)-a(97) from Nathaniel Johnston, Apr 30 2011

A060397 Smallest prime that divides k^2 + k + 2n + 1 for k = 0,1,2,....

Original entry on oeis.org

3, 3, 5, 3, 3, 11, 3, 3, 17, 3, 3, 5, 3, 3, 5, 3, 3, 5, 3, 3, 41, 3, 3, 7, 3, 3, 5, 3, 3, 5, 3, 3, 5, 3, 3, 7, 3, 3, 7, 3, 3, 5, 3, 3, 5, 3, 3, 5, 3, 3, 11, 3, 3, 7, 3, 3, 5, 3, 3, 5, 3, 3, 5, 3, 3, 7, 3, 3, 11, 3, 3, 5, 3, 3, 5, 3, 3, 5, 3, 3, 7, 3, 3, 11, 3, 3, 5, 3, 3, 5, 3, 3, 5, 3, 3, 7, 3, 3, 7, 3, 3
Offset: 0

Views

Author

N. J. A. Sloane, Apr 04 2001

Keywords

Comments

Bisection of A060395.

Examples

			To obtain a(3), note that x^2+x+7 takes the values 7,9,13,19,... for k=0,1,2,... and the smallest prime dividing these numbers is 3.
		

Crossrefs

Cf. A060380, A060392-A060398. A060398 gives values of k.

Programs

  • Mathematica
    a[n_] := Switch[n, 0, 3, , Module[{f, kmax0 = 2}, f[kmax] := f[kmax] = MinimalBy[Table[{k, FactorInteger[k^2 + k + 2 n + 1][[1, 1]]}, {k, 0, kmax}], Last, 1]; f[kmax = kmax0]; f[kmax = 2 kmax]; While[f[kmax] != f[kmax/2], kmax = 2 kmax]; f[kmax][[1, 2]]]];
    Table[a[n], {n, 0, 100}] (* Jean-François Alcover, Aug 15 2022 *)

Formula

a(n)=3 if n is equal to 0 or 1 mod 3.

Extensions

More terms from Matthew Conroy, Apr 18 2001
Showing 1-2 of 2 results.