cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A060422 Number of acute triangles made from vertices of a regular n-gon.

This page as a plain text file.
%I A060422 #19 Jun 13 2015 00:50:26
%S A060422 0,0,0,1,0,5,2,14,8,30,20,55,40,91,70,140,112,204,168,285,240,385,330,
%T A060422 506,440,650,572,819,728,1015,910,1240,1120,1496,1360,1785,1632,2109,
%U A060422 1938,2470,2280
%N A060422 Number of acute triangles made from vertices of a regular n-gon.
%H A060422 Vincenzo Librandi, <a href="/A060422/b060422.txt">Table of n, a(n) for n = 0..1000</a>
%H A060422 <a href="/index/Rec#order_07">Index entries for linear recurrences with constant coefficients</a>, signature (1,3,-3,-3,3,1,-1).
%F A060422 a(n) = n*(n+1)*(n-1)/24 when n is odd, otherwise n*(n-2)*(n-4)/24.
%F A060422 G.f.: x^3*(2*x^2-x+1) / ((x-1)^4*(x+1)^3). - _Colin Barker_, Dec 24 2012
%F A060422 a(n) = n*(2*n^2-6*n+7-3*(2*n-3)*(-1)^n)/48. - _Luce ETIENNE_, Mar 19 2015
%t A060422 LinearRecurrence[{1, 3, -3, -3, 3, 1, -1},{0, 0, 0, 1, 0, 5, 2}, 50] (* _Vincenzo Librandi_, Dec 25 2012 *)
%Y A060422 Union of A000330, A007290.
%K A060422 easy,nonn
%O A060422 0,6
%A A060422 _Sen-Peng Eu_, Apr 05 2001