cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A060426 a(n) is the number of degrees in the sequence of the degrees of the irreducible representations of the symmetric group S_n that appear only once.

This page as a plain text file.
%I A060426 #21 Sep 23 2024 18:03:39
%S A060426 1,0,1,1,1,1,1,2,1,2,2,3,2,3,4,4,5,5,4,6,8,8,6,7,10,11,11,15,15,16,18,
%T A060426 21,22,23,29,33,31,31,39,43,44,52,51,58,64,71,66,82,88,96,93,103,115,
%U A060426 128,143,150,156,160,173,199,202,202,242,263,269,293,308
%N A060426 a(n) is the number of degrees in the sequence of the degrees of the irreducible representations of the symmetric group S_n that appear only once.
%C A060426 Bounded above by A000700(n). - _Eric M. Schmidt_, Apr 29 2013
%e A060426 a(6) = 1 because the degrees for S_6 are 1,1,5,5,5,5,9,9,10,10,16 and the only number that appears once is 16.
%t A060426 h[l_] := With[{n = Length[l]}, Total[l]!/Product[Product[1 + l[[i]] - j + Sum[If[l[[k]] >= j, 1, 0], {k, i + 1, n}], {j, 1, l[[i]]}], {i, 1, n}]];
%t A060426 g[n_, i_, l_] := If[n == 0 || i == 1, h[Join[l, Array[1&, n]]], If[i < 1, 0, Flatten@ Table[g[n - i*j, i - 1, Join[l, Array[i&, j]]], {j, 0, n/i}]]];
%t A060426 a[n_] := a[n] = If[n == 1, 1, Count[Tally[g[n, n, {}]], {_, 1}] ];
%t A060426 Table[Print[n, " ", a[n]]; a[n], {n, 1, 50}] (* _Jean-François Alcover_, Sep 23 2024, after _Alois P. Heinz_ in A060240 *)
%o A060426 (Sage)
%o A060426 def A060426(n) :
%o A060426     mult = {}
%o A060426     for P in Partitions(n) :
%o A060426         dim = P.dimension()
%o A060426         mult[dim] = mult.get(dim, 0) + 1
%o A060426     return len([m for m in iter(mult) if mult[m]==1])
%o A060426 # _Eric M. Schmidt_, Apr 29 2013
%Y A060426 Cf. A059867, A060368, A060369, A060437, A061569, A089248. [From _M. F. Hasler_, Jun 14 2009]
%K A060426 nonn
%O A060426 1,8
%A A060426 Avi Peretz (njk(AT)netvision.net.il), Apr 05 2001
%E A060426 More terms from _Eric M. Schmidt_, Apr 29 2013