This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A060426 #21 Sep 23 2024 18:03:39 %S A060426 1,0,1,1,1,1,1,2,1,2,2,3,2,3,4,4,5,5,4,6,8,8,6,7,10,11,11,15,15,16,18, %T A060426 21,22,23,29,33,31,31,39,43,44,52,51,58,64,71,66,82,88,96,93,103,115, %U A060426 128,143,150,156,160,173,199,202,202,242,263,269,293,308 %N A060426 a(n) is the number of degrees in the sequence of the degrees of the irreducible representations of the symmetric group S_n that appear only once. %C A060426 Bounded above by A000700(n). - _Eric M. Schmidt_, Apr 29 2013 %e A060426 a(6) = 1 because the degrees for S_6 are 1,1,5,5,5,5,9,9,10,10,16 and the only number that appears once is 16. %t A060426 h[l_] := With[{n = Length[l]}, Total[l]!/Product[Product[1 + l[[i]] - j + Sum[If[l[[k]] >= j, 1, 0], {k, i + 1, n}], {j, 1, l[[i]]}], {i, 1, n}]]; %t A060426 g[n_, i_, l_] := If[n == 0 || i == 1, h[Join[l, Array[1&, n]]], If[i < 1, 0, Flatten@ Table[g[n - i*j, i - 1, Join[l, Array[i&, j]]], {j, 0, n/i}]]]; %t A060426 a[n_] := a[n] = If[n == 1, 1, Count[Tally[g[n, n, {}]], {_, 1}] ]; %t A060426 Table[Print[n, " ", a[n]]; a[n], {n, 1, 50}] (* _Jean-François Alcover_, Sep 23 2024, after _Alois P. Heinz_ in A060240 *) %o A060426 (Sage) %o A060426 def A060426(n) : %o A060426 mult = {} %o A060426 for P in Partitions(n) : %o A060426 dim = P.dimension() %o A060426 mult[dim] = mult.get(dim, 0) + 1 %o A060426 return len([m for m in iter(mult) if mult[m]==1]) %o A060426 # _Eric M. Schmidt_, Apr 29 2013 %Y A060426 Cf. A059867, A060368, A060369, A060437, A061569, A089248. [From _M. F. Hasler_, Jun 14 2009] %K A060426 nonn %O A060426 1,8 %A A060426 Avi Peretz (njk(AT)netvision.net.il), Apr 05 2001 %E A060426 More terms from _Eric M. Schmidt_, Apr 29 2013