A060434 An inverse to Mertens's function: smallest k >= 2 such that Mertens's function |M(k)| (see A002321) is equal to n.
2, 3, 5, 13, 31, 110, 114, 197, 199, 443, 659, 661, 665, 1105, 1106, 1109, 1637, 2769, 2770, 2778, 2791, 2794, 2795, 2797, 2802, 2803, 6986, 6987, 7013, 7021, 8503, 8506, 8507, 8509, 8510, 8511, 9749, 9822, 9823, 9830, 9831, 9833, 9857, 9861, 19043
Offset: 0
Examples
M(1637) = 17 because the sum of Moebius mu(1) + mu(2) + ... + mu(1637) = 17.
Crossrefs
Essentially same as A051402 except for initial terms.
Programs
-
Maple
with(numtheory): k := -1: s := 0: for n from 1 to 20000 do s := s+mobius(n): if (abs(s) > k) and (n>1) then k := abs(s): print(n, k); fi; od:
-
Mathematica
Reap[ For[ k = -1; s = 0; n = 1, n <= 20000, n++, s = s + MoebiusMu[n]; If[Abs[s] > k && n > 1, k = Abs[s]; Sow[n]]]][[2, 1]] (* Jean-François Alcover, Sep 04 2013, after Maple *)
Comments