A060436 Numerator of Sum_{k=1..n} d(k)/k, where d() = A000005().
1, 2, 8, 41, 229, 269, 2003, 2213, 2353, 2521, 28571, 30881, 410693, 427853, 443869, 1850551, 31939847, 33301207, 640891093, 664170349, 226316943, 231019823, 5365187609, 16690477147, 84523231511, 85896110711, 784963282799, 802173304199, 23423652688171
Offset: 1
Examples
1, 2, 8/3, 41/12, 229/60, 269/60, 2003/420, 2213/420, 2353/420, 2521/420, 28571/4620, 30881/4620, ...
References
- M. N. Huxley, Area, Lattice Points and Exponential Sums, Oxford, 1996; p. 237.
Links
- Robert Israel, Table of n, a(n) for n = 1..2296
- Vaclav Kotesovec, Graph - The asymptotic ratio of Sum_{k=1..n} d(k)/k
- Mathematics.StackExchange, The asymptotic expansion for the weighted sum of divisors, Aug 19 2013.
Programs
-
Maple
t:= 0: for n from 1 to 50 do t:= t + numtheory:-tau(n)/n; A[n]:= numer(t); od: seq(A[n],n=1..50); # Robert Israel, Mar 20 2018
Formula
Sum_{k=1..n} A000005(k)/k = a(n)/A065080(n) ~ log(n)^2/2 + 2*gamma*log(n) + gamma^2 - 2*gamma_1, where gamma is the Euler-Mascheroni constant A001620 and gamma_1 is the first Stieltjes constant A082633. - Vaclav Kotesovec, Aug 30 2018
Comments