This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A060437 #20 Jul 30 2017 22:52:41 %S A060437 1,1,2,3,4,5,7,12,15,22,28,38,45,52,81,107,130,179,194,280,348,438, %T A060437 502,693,848,1037,1274,1594,1847,2473,2851,3652,4271,5137,6140,7995, %U A060437 9103,11046,12978,16216,18348,23153,26239,31880,37582,45144,51469,63571,71910 %N A060437 a(n) is the number of different degrees in the sequence of the degrees of the irreducible representations of the symmetric group S_n, i.e., count each degree only once. %C A060437 The total number of irreducible representations of S_n is the partition function p(n) (sequence A000041) - this is the total number of the degrees counting multiplicities. %C A060437 Also a(n) = number of distinct values of A153452(m) when A056239(m) is equal to n. - _Naohiro Nomoto_, Dec 31 2008 %e A060437 a(6) = 5 because the degrees for S_6 are 1,1,5,5,5,5,9,9,10,10,16 and counting each degree only once only 5 numbers remain: 1,5,9,10,16. %p A060437 with(numtheory): %p A060437 g:= proc(n) option remember; `if`(n=1, 1, %p A060437 add(g(n/q*`if`(q=2, 1, prevprime(q))), q=factorset(n))) %p A060437 end: %p A060437 b:= proc(n, i) option remember; `if`(n=0 or i<2, [2^n], %p A060437 [seq(map(p->p*ithprime(i)^j, b(n-i*j, i-1))[], j=0..n/i)]) %p A060437 end: %p A060437 a:= n-> nops(map(g, {b(n, n)[]})): %p A060437 seq(a(n), n=1..30); # _Alois P. Heinz_, Aug 09 2012 %t A060437 g[n_] := g[n] = If[n == 1, 1, Sum[g[n/q*If[q == 2, 1, NextPrime[q, -1]]], {q, FactorInteger[n][[All, 1]]}]]; b[n_, i_] :=b[n, i] = If[n == 0 || i<2, {2^n}, Flatten @ Table[ Map[Function[{p}, p*Prime[i]^j], b[n-i*j, i-1]], {j, 0, n/i}] ]; a[n_] := Length[Union[g /@ b[n, n]]]; Table[a[n], {n, 1, 30}] (* _Jean-François Alcover_, Apr 15 2015, after _Alois P. Heinz_ *) %Y A060437 Cf. A000041, A060240, A215366. %K A060437 nonn %O A060437 1,3 %A A060437 Avi Peretz (njk(AT)netvision.net.il), Apr 07 2001 %E A060437 More terms from _Vladeta Jovovic_, May 20 2003 %E A060437 a(22)-a(49) from _Alois P. Heinz_, Aug 09 2012