cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A060437 a(n) is the number of different degrees in the sequence of the degrees of the irreducible representations of the symmetric group S_n, i.e., count each degree only once.

This page as a plain text file.
%I A060437 #20 Jul 30 2017 22:52:41
%S A060437 1,1,2,3,4,5,7,12,15,22,28,38,45,52,81,107,130,179,194,280,348,438,
%T A060437 502,693,848,1037,1274,1594,1847,2473,2851,3652,4271,5137,6140,7995,
%U A060437 9103,11046,12978,16216,18348,23153,26239,31880,37582,45144,51469,63571,71910
%N A060437 a(n) is the number of different degrees in the sequence of the degrees of the irreducible representations of the symmetric group S_n, i.e., count each degree only once.
%C A060437 The total number of irreducible representations of S_n is the partition function p(n) (sequence A000041) - this is the total number of the degrees counting multiplicities.
%C A060437 Also a(n) = number of distinct values of A153452(m) when A056239(m) is equal to n. - _Naohiro Nomoto_, Dec 31 2008
%e A060437 a(6) = 5 because the degrees for S_6 are 1,1,5,5,5,5,9,9,10,10,16 and counting each degree only once only 5 numbers remain: 1,5,9,10,16.
%p A060437 with(numtheory):
%p A060437 g:= proc(n) option remember; `if`(n=1, 1,
%p A060437       add(g(n/q*`if`(q=2, 1, prevprime(q))), q=factorset(n)))
%p A060437     end:
%p A060437 b:= proc(n, i) option remember; `if`(n=0 or i<2, [2^n],
%p A060437       [seq(map(p->p*ithprime(i)^j, b(n-i*j, i-1))[], j=0..n/i)])
%p A060437     end:
%p A060437 a:= n-> nops(map(g, {b(n, n)[]})):
%p A060437 seq(a(n), n=1..30);  # _Alois P. Heinz_, Aug 09 2012
%t A060437 g[n_] := g[n] = If[n == 1, 1, Sum[g[n/q*If[q == 2, 1, NextPrime[q, -1]]], {q,     FactorInteger[n][[All, 1]]}]]; b[n_, i_] :=b[n, i] = If[n == 0 || i<2, {2^n}, Flatten @ Table[ Map[Function[{p}, p*Prime[i]^j], b[n-i*j, i-1]], {j, 0, n/i}] ]; a[n_] := Length[Union[g /@ b[n, n]]]; Table[a[n], {n, 1, 30}] (* _Jean-François Alcover_, Apr 15 2015, after _Alois P. Heinz_ *)
%Y A060437 Cf. A000041, A060240, A215366.
%K A060437 nonn
%O A060437 1,3
%A A060437 Avi Peretz (njk(AT)netvision.net.il), Apr 07 2001
%E A060437 More terms from _Vladeta Jovovic_, May 20 2003
%E A060437 a(22)-a(49) from _Alois P. Heinz_, Aug 09 2012