This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A060441 #15 Jul 02 2025 16:02:01 %S A060441 0,1,1,2,3,5,2,2,2,13,3,7,2,17,5,11,89,2,2,2,2,3,3,233,13,29,2,5,61,3, %T A060441 7,47,1597,2,2,2,17,19,37,113,3,5,11,41,2,13,421,89,199,28657,2,2,2,2, %U A060441 2,3,3,7,23,5,5,3001,233,521,2,17,53,109,3,13,29,281,514229,2,2,2,5,11,31,61 %N A060441 Triangle T(n,k), n >= 0, in which n-th row (for n >= 3) lists prime factors of Fibonacci(n) (see A000045), with repetition. %C A060441 Rows have irregular lengths. %C A060441 T(n,k) = A027746(A000045(n),k), k = 1 .. A038575(n). - _Reinhard Zumkeller_, Aug 30 2014 %H A060441 Blair Kelly, <a href="http://mersennus.net/fibonacci//">Fibonacci and Lucas factorizations</a> %e A060441 Triangle begins: %e A060441 0; %e A060441 1; %e A060441 1; %e A060441 2; %e A060441 3; %e A060441 5; %e A060441 2, 2, 2; %e A060441 13; %e A060441 3, 7; %e A060441 2, 17; %e A060441 ... %p A060441 with(combinat); A060441 := n->ifactor(fibonacci(n)); %p A060441 with(numtheory): with(combinat): for i from 3 to 50 do for j from 1 to nops(ifactors(fibonacci(i))[2]) do for k from 1 to ifactors(fibonacci(i))[2][j][2] do printf(`%d,`, ifactors(fibonacci(i))[2][j][1]) od: od: od: %o A060441 (Haskell) %o A060441 a060441 n k = a060441_tabf !! (n-1) !! (k-1) %o A060441 a060441_row n = a060441_tabf !! (n-1) %o A060441 a060441_tabf = [0] : [1] : [1] : map a027746_row (drop 3 a000045_list) %o A060441 -- _Reinhard Zumkeller_, Aug 30 2014 %Y A060441 A000045, A060442. %Y A060441 Cf. A038575 (row lengths), A027746, A001222. %K A060441 nonn,tabf,easy %O A060441 0,4 %A A060441 _N. J. A. Sloane_, Apr 07 2001 %E A060441 More terms from _James Sellers_, Apr 09 2001