This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A060442 #31 Jul 02 2025 16:02:01 %S A060442 0,1,1,2,3,5,2,13,3,7,2,17,5,11,89,2,3,233,13,29,2,5,61,3,7,47,1597,2, %T A060442 17,19,37,113,3,5,11,41,2,13,421,89,199,28657,2,3,7,23,5,3001,233,521, %U A060442 2,17,53,109,3,13,29,281,514229,2,5,11,31,61,557,2417,3,7,47,2207,2,89 %N A060442 Triangle T(n,k), n >= 0, in which n-th row (for n >= 3) lists prime factors of Fibonacci(n) (see A000045), without repetition. %C A060442 Rows have irregular lengths. %C A060442 T(n,k) = A027748(A000045(n),k), k = 1 .. A022307(n). - _Reinhard Zumkeller_, Aug 30 2014 %H A060442 T. D. Noe and Charles R Greathouse IV, <a href="/A060442/b060442.txt">Rows n=0..1422 of triangle, flattened</a> (rows up to 1000 from Noe; using existing factorization databases) %H A060442 J. Brillhart, P. L. Montgomery and R. D. Silverman, <a href="https://doi.org/10.1090/S0025-5718-1988-0917832-6">Tables of Fibonacci and Lucas factorizations</a>, Math. Comp. 50 (1988), 251-260, S1-S15. Math. Rev. 89h:11002. %H A060442 Blair Kelly, <a href="http://mersennus.net/fibonacci//">Fibonacci and Lucas Factorizations</a> %e A060442 Triangle begins: %e A060442 0; %e A060442 1; %e A060442 1; %e A060442 2; %e A060442 3; %e A060442 5; %e A060442 2; %e A060442 13; %e A060442 3, 7; %e A060442 2, 17; %e A060442 5, 11; %e A060442 89; %e A060442 2, 3; %e A060442 233; %e A060442 13, 29; %e A060442 2, 5, 61; %e A060442 3, 7, 47; %e A060442 1597; %e A060442 2, 17, 19; %e A060442 37, 113; %e A060442 3, 5, 11, 41; %e A060442 ... %p A060442 with(numtheory): with(combinat): for i from 3 to 50 do for j from 1 to nops(ifactors(fibonacci(i))[2]) do printf(`%d,`, ifactors(fibonacci(i))[2][j][1]) od: od: %o A060442 (Haskell) %o A060442 a060442 n k = a060442_tabf !! n !! k %o A060442 a060442_row n = a060442_tabf !! n %o A060442 a060442_tabf = [0] : [1] : [1] : map a027748_row (drop 3 a000045_list) %o A060442 -- _Reinhard Zumkeller_, Aug 30 2014 %Y A060442 Cf. A000045, A060441. %Y A060442 Cf. A027748, A022307 (row lengths for n>2), A001221. %K A060442 nonn,tabf,easy %O A060442 0,4 %A A060442 _N. J. A. Sloane_, Apr 07 2001 %E A060442 More terms from _James Sellers_, Apr 09 2001