A060454 Consider the line segment in R^n from the origin to the point v = (1,4,9,...,n^2); let d = squared distance to this line from the closest point of Z^n (excluding the endpoints). Sequence gives d times v.v.
1, 6, 38, 107, 350, 728, 1752, 3090, 6215, 9878, 17654, 26117, 42924, 60256, 93024, 125460, 184509, 241110, 341110, 434511, 595562, 742808, 991640, 1215110, 1586403, 1914822, 2452646, 2922185, 3681560, 4337024, 5385600, 6281704, 7701561, 8904294, 10793862, 12381939, 14822755, 16907891, 19221332, 21781332, 24607093, 27718789, 31137590
Offset: 0
Keywords
Links
- N. J. A. Sloane, Vinay A. Vaishampayan and Sueli I. R. Costa, Fat Struts: Constructions and a Bound, Proceedings Information Theory Workshop, Taormino, Italy, 2009. [Cached copy]
- N. J. A. Sloane, Vinay A. Vaishampayan and Sueli I. R. Costa, A Note on Projecting the Cubic Lattice, Discrete and Computational Geometry, Vol. 46 (No. 3, 2011), 472-478.
- N. J. A. Sloane, Vinay A. Vaishampayan and Sueli I. R. Costa, The Lifting Construction: A General Solution to the Fat Strut Problem, Proceedings International Symposium on Information Theory (ISIT), 2010, IEEE Press. [Cached copy]
Crossrefs
Cf. A059804.
Comments