A061011
Successive maxima in sequence A060457.
Original entry on oeis.org
1, 4, 8, 16, 32, 36, 48, 64, 72, 76, 96, 144, 160, 192, 196, 288, 304, 432, 576, 608, 684, 784, 864, 1008, 1152, 1296, 1440, 1568, 1728, 1764, 2016, 2304, 2736, 3024, 3456, 3888, 4032, 4176, 4608, 5472, 7056, 8208, 8496, 9072, 9216, 10656, 10944, 12816
Offset: 1
Larry Reeves (larryr(AT)acm.org), Apr 12 2001
A061012 lists the index numbers for these maxima.
A061012
Index values for new maxima in sequence A060457.
Original entry on oeis.org
1, 2, 4, 6, 12, 14, 18, 24, 28, 34, 36, 42, 66, 72, 82, 84, 102, 126, 168, 204, 238, 246, 252, 294, 336, 378, 462, 492, 504, 574, 588, 672, 714, 882, 966, 1134, 1176, 1218, 1344, 1428, 1722, 2142, 2226, 2646, 2688, 2814, 2856, 3318, 3444
Offset: 1
Larry Reeves (larryr(AT)acm.org), Apr 12 2001
A061011 is the sequence of new maxima.
A272196
Number of solutions of the congruence y^2 == x^3 - 4*x^2 + 16 (mod p) as p runs through the primes.
Original entry on oeis.org
2, 4, 4, 9, 10, 9, 19, 19, 24, 29, 24, 34, 49, 49, 39, 59, 54, 49, 74, 74, 69, 89, 89, 74, 104, 99, 119, 89, 99, 104, 119, 149, 144, 129, 159, 149, 164, 159, 179, 179, 194, 174, 174, 189, 199, 199, 199, 204, 209, 214, 209, 269, 249, 274, 259, 249, 259, 299, 279, 299
Offset: 1
The first nonnegative complete residue system {0, 1, ..., prime(n)-1} is used. The solutions (x, y) of y^2 == x^3 - 4*x^2 + 16 (mod prime(n)) begin:
n, prime(n), a(n)\ solutions (x, y)
1, 2, 2: (0, 0), (1, 1)
2, 3, 4: (0, 1), (0, 2), (1, 1), (1, 2)
3, 5, 4: (0, 1), (0, 4), (4, 1), (4, 4)
4, 7, 9: (0, 3), (0, 4), (2, 1), (2, 6),
(4, 3), (4, 4), (6, 2), (6, 5)
5, 11, 10: (0, 4), (0, 7), (4, 4), (4, 7),
(6, 0), (7, 3), (7, 8), (9, 5),
(9, 6), (10, 0)
...
--------------------------------------------------
- Edward Frenkel, Liebe und Mathematik, Springer, Spektrum, 2014, p. 84.
- Carlos J. Moreno and Samuel S. Wagstaff, Jr., Sums of Squares of Integers, Chapman & Hall/CRC, Boca Raton, London, New York, pp. 246-247 (corrected).
- J. H. Silverman, The Arithmetic of Elliptic Curves, Springer, 1986, pp. 46-48.
- J. H. Silverman, A Friendly Introduction to Number Theory, 3rd ed., Pearson Education, Inc, 2006, Table 45.6, p. 403, Theorem 47.2, p. 413 (4th ed., Pearson 2014, Table 6, p. 369, Theorem 2, p. 383)
- Seiichi Manyama, Table of n, a(n) for n = 1..10000
- J. E. Cremona, Algorithms for Modular Elliptic Curves.
- Yves Martin and Ken Ono, Eta-Quotients and Elliptic Curves, Proc. Amer. Math. Soc. 125, No 11 (1997), 3169-3176.
- Carlos J. Moreno and Samuel S. Wagstaff, Jr., Sums of Squares of Integers, Chapman & Hall/CRC, Boca Raton, London, New York, pp. 246-247.
- J. H. Silverman, The Arithmetic of Elliptic Curves, Springer, 1986, pp. 46-48.
A366362
Triangle read by rows: T(n,k) = Sum_{y=1..n} Sum_{x=1..n} [GCD(f(x,y), n) = k], where f(x,y) = x^3 - x^2 - y^2 - y.
Original entry on oeis.org
1, 0, 4, 5, 0, 4, 0, 8, 0, 8, 21, 0, 0, 0, 4, 0, 20, 0, 0, 0, 16, 40, 0, 0, 0, 0, 0, 9, 0, 32, 0, 16, 0, 0, 0, 16, 45, 0, 24, 0, 0, 0, 0, 0, 12, 0, 84, 0, 0, 0, 0, 0, 0, 0, 16, 111, 0, 0, 0, 0, 0, 0, 0, 0, 0, 10, 0, 40, 0, 40, 0, 32, 0, 0, 0, 0, 0, 32
Offset: 1
{
{1}, = 1^2
{0, 4}, = 2^2
{5, 0, 4}, = 3^2
{0, 8, 0, 8}, = 4^2
{21, 0, 0, 0, 4}, = 5^2
{0, 20, 0, 0, 0, 16}, = 6^2
{40, 0, 0, 0, 0, 0, 9}, = 7^2
{0, 32, 0, 16, 0, 0, 0, 16}, = 8^2
{45, 0, 24, 0, 0, 0, 0, 0, 12}, = 9^2
{0, 84, 0, 0, 0, 0, 0, 0, 0, 16}, = 10^2
{111, 0, 0, 0, 0, 0, 0, 0, 0, 0, 10}, = 11^2
{0, 40, 0, 40, 0, 32, 0, 0, 0, 0, 0, 32} = 12^2
}
-
f = x^3 - x^2 - y^2 - y; nn = 12; Flatten[Table[Table[Sum[Sum[If[GCD[f, n] == k, 1, 0], {x, 1, n}], {y, 1, n}], {k, 1, n}], {n, 1, nn}]]
A376073
Number of solutions of the congruence y^2 + y == x^3 - x^2 (mod p) as p runs through the primes.
Original entry on oeis.org
4, 4, 4, 9, 10, 9, 19, 19, 24, 29, 24, 34, 49, 49, 39, 59, 54, 49, 74, 74, 69, 89, 89, 74, 104, 99, 119, 89, 99, 104, 119, 149, 144, 129, 159, 149, 164, 159, 179, 179, 194, 174, 174, 189, 199, 199, 199, 204, 209, 214, 209, 269, 249, 274, 259, 249, 259, 299, 279, 299
Offset: 1
- Edward Frenkel, Love and math: the heart of hidden reality, Basic Books, 2013. See pages 86-89.
Showing 1-5 of 5 results.
Comments